skip to content

Centre of African Studies

 

Religious people coped better with Covid-19 pandemic, research suggests

University News - Tue, 30/01/2024 - 09:21

People of religious faith may have experienced lower levels of unhappiness and stress than secular people during the UK’s Covid-19 lockdowns in 2020 and 2021, according to a new University of Cambridge study released as a working paper.

The findings follow recently published Cambridge-led research suggesting that worsening mental health after experiencing Covid infection – either personally or in those close to you – was also somewhat ameliorated by religious belief. This study looked at the US population during early 2021.

University of Cambridge economists argue that – taken together – these studies show that religion may act as a bulwark against increased distress and reduced wellbeing during times of crisis, such as a global public health emergency.

“Selection biases make the wellbeing effects of religion difficult to study,” said Prof Shaun Larcom from Cambridge’s Department of Land Economy, and co-author of the latest study. “People may become religious due to family backgrounds, innate traits, or to cope with new or existing struggles.”

“However, the Covid-19 pandemic was an extraordinary event affecting everyone at around the same time, so we could gauge the impact of a negative shock to wellbeing right across society. This provided a unique opportunity to measure whether religion was important for how some people deal with a crisis.”

Larcom and his Cambridge colleagues Prof Sriya Iyer and Dr Po-Wen She analysed survey data collected from 3,884 people in the UK during the first two national lockdowns, and compared it to three waves of data prior to the pandemic.

They found that while lockdowns were associated with a universal uptick in unhappiness, the average increase in feeling miserable was 29% lower for people who described themselves as belonging to a religion.*

The researchers also analysed the data by “religiosity”: the extent of an individual’s commitment to religious beliefs, and how central it is to their life. Those for whom religion makes “some or a great difference” in their lives experienced around half the increase in unhappiness seen in those for whom religion makes little or no difference.**

“The study suggests that it is not just being religious, but the intensity of religiosity that is important when coping with a crisis,” said Larcom.

Those self-identifying as religious in the UK are more likely to have certain characteristics, such as being older and female. The research team “controlled” for these statistically to try and isolate the effects caused by faith alone, and still found that the probability of religious people having an increase in depression was around 20% lower than non-religious people.

There was little overall difference between Christians, Muslims and Hindus – followers of the three biggest religions in the UK. However, the team did find that wellbeing among some religious groups appeared to suffer more than others when places of worship were closed during the first lockdown.

“The denial of weekly communal attendance appears to have been particularly affecting for Catholics and Muslims,” said Larcom.

For the earlier study, authored by Prof Sriya Iyer, along with colleagues Kishen Shastry, Girish Bahal and Anand Shrivastava from Australia and India, researchers used online surveys to investigate Covid-19 infections among respondents or their immediate family and friends, as well as religious beliefs, and mental health. 

The study was conducted during February and March 2021, and involved 5,178 people right across the United States, with findings published in the journal European Economic Review in November 2023.

Researchers found that almost half those who reported a Covid-19 infection either in themselves or their immediate social network experienced an associated reduction in wellbeing.

Where mental health declined, it was around 60% worse on average for the non-religious compared to people of faith with typical levels of “religiosity”.***

Interestingly, the positive effects of religion were not found in areas with strictest lockdowns, suggesting access to places of worship might be even more important in a US context. The study also found significant uptake of online religious services, and a 40% lower association between Covid-19 and mental health for those who used them****.

“Religious beliefs may be used by some as psychological resources that can shore up self-esteem and add coping skills, combined with practices that provide social support,” said Prof Iyer, from Cambridge’s Faculty of Economics.

“The pandemic presented an opportunity to glean further evidence of this in both the United Kingdom and the United States, two nations characterised by enormous religious diversity.” 

Added Larcom: “These studies show a relationship between religion and lower levels of distress during a global crisis. It may be that religious faith builds resilience, and helps people cope with adversity by providing hope, consolation and meaning in tumultuous times.”  

Two Cambridge-led studies suggest that the psychological distress caused by lockdowns (UK) and experience of infection (US) was reduced among those of faith compared to non-religious people.  

Getty/Luis AlvarezPeople in church praying with covid-19 restrictions Notes

* The increase in the mean measure for unhappiness was 6.1 percent for people who do not identify with a religion during the lockdown, compared to an increase of 4.3 percent for those who do belong to a religion – a difference of 29%.

**For those that religion makes little or no difference, the increase was 6.3 percent.  For those for whom religion makes some or a great difference, the increase was around half that, at 3 percent and 3.5 percent respectively.

*** This was after controlling for various demographic and environmental traits, including age, race, income, and average mental health rates prior to the pandemic.

**** The interpretation is from Column 1 of Table 5: Determinants of mental health, online access to religion. Where the coefficients of Covid {Not accessed online service} is 2.265 and Covid {Accessed online service} is 1.344. Hence the difference is 2.265-1.344 = 0.921 which is 40% of 2.265.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Robot trained to read braille at twice the speed of humans

University News - Mon, 29/01/2024 - 06:04

The research team, from the University of Cambridge, used machine learning algorithms to teach a robotic sensor to quickly slide over lines of braille text. The robot was able to read the braille at 315 words per minute at close to 90% accuracy.

Although the robot braille reader was not developed as an assistive technology, the researchers say the high sensitivity required to read braille makes it an ideal test in the development of robot hands or prosthetics with comparable sensitivity to human fingertips. The results are reported in the journal IEEE Robotics and Automation Letters.

Human fingertips are remarkably sensitive and help us gather information about the world around us. Our fingertips can detect tiny changes in the texture of a material or help us know how much force to use when grasping an object: for example, picking up an egg without breaking it or a bowling ball without dropping it.

Reproducing that level of sensitivity in a robotic hand, in an energy-efficient way, is a big engineering challenge. In Professor Fumiya Iida’s lab in Cambridge’s Department of Engineering, researchers are developing solutions to this and other skills that humans find easy, but robots find difficult.

“The softness of human fingertips is one of the reasons we’re able to grip things with the right amount of pressure,” said Parth Potdar from Cambridge’s Department of Engineering and an undergraduate at Pembroke College, the paper’s first author. “For robotics, softness is a useful characteristic, but you also need lots of sensor information, and it’s tricky to have both at once, especially when dealing with flexible or deformable surfaces.”

Braille is an ideal test for a robot ‘fingertip’ as reading it requires high sensitivity, since the dots in each representative letter pattern are so close together. The researchers used an off-the-shelf sensor to develop a robotic braille reader that more accurately replicates human reading behaviour.

“There are existing robotic braille readers, but they only read one letter at a time, which is not how humans read,” said co-author David Hardman, also from the Department of Engineering. “Existing robotic braille readers work in a static way: they touch one letter pattern, read it, pull up from the surface, move over, lower onto the next letter pattern, and so on. We want something that’s more realistic and far more efficient.”

The robotic sensor the researchers used has a camera in its ‘fingertip’, and reads by using a combination of the information from the camera and the sensors. “This is a hard problem for roboticists as there’s a lot of image processing that needs to be done to remove motion blur, which is time and energy-consuming,” said Potdar.

The team developed machine learning algorithms so the robotic reader would be able to ‘deblur’ the images before the sensor attempted to recognise the letters. They trained the algorithm on a set of sharp images of braille with fake blur applied. After the algorithm had learned to deblur the letters, they used a computer vision model to detect and classify each character.

Once the algorithms were incorporated, the researchers tested their reader by sliding it quickly along rows of braille characters. The robotic braille reader could read at 315 words per minute at 87% accuracy, which is twice as fast and about as accurate as a human Braille reader.

“Considering that we used fake blur the train the algorithm, it was surprising how accurate it was at reading braille,” said Hardman. “We found a nice trade-off between speed and accuracy, which is also the case with human readers.”

“Braille reading speed is a great way to measure the dynamic performance of tactile sensing systems, so our findings could be applicable beyond braille, for applications like detecting surface textures or slippage in robotic manipulation,” said Potdar.

In future, the researchers are hoping to scale the technology to the size of a humanoid hand or skin. The research was supported in part by the Samsung Global Research Outreach Program.

 

Reference:
Parth Potdar et al. ‘High-Speed Tactile Braille Reading via Biomimetic Sliding Interactions.’ IEEE Robotics and Automation Letters (2024). DOI: 10.1109/LRA.2024.3356978

Researchers have developed a robotic sensor that incorporates artificial intelligence techniques to read braille at speeds roughly double that of most human readers.

Parth PotdarRobot braille reader


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Cambridge student Giulio Regeni remembered

University News - Thu, 25/01/2024 - 15:57

The plaque offers a space in which colleagues and friends of the Cambridge PhD student, who studied at Girton, can pay their respects.

Giulio, an experienced researcher, was conducting fieldwork when he was abducted from the streets of Cairo on 25 January 2016, and later found murdered on 3 February 2016. The plaque unveiling marks the 8-year anniversary of his death. No one has yet been convicted of the crime.

Court officials in Rome have charged four Egyptian security officials with Giulio’s abduction, torture and murder, and a trial is due to begin in February. The College and University continue to stand in support of Giulio’s family and friends, and with Amnesty International, in their tireless efforts to uncover the truth of what happened to Giulio.

Elisabeth Kendall, Mistress of Girton College, said: “The loss of Giulio continues to cast a dark shadow over all those who knew him. Giulio was a passionate researcher with a deep sense of justice who had his whole life ahead of him before it was cruelly ended in Cairo. Justice has yet to be done. We will never stop remembering Giulio.”

Every year the College marks the anniversary by flying the College flag to half-mast in memory on 25 January and then on 3 February.

Giulio Regeni was remembered during an event at Girton College, where a plaque was unveiled in his honour.

Giulio was a passionate researcher with a deep sense of justice.Elisabeth Kendall, Mistress of Girton CollegeGirton College, University of Cambridge.Elisabeth Kendall, Mistress of Girton College, unveils the plaque honouring Giulio Regeni.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

New Pro-Vice-Chancellor for Innovation appointed

University News - Wed, 24/01/2024 - 12:06

Dr O’Brien will take over from current Senior Pro-Vice-Chancellor Andy Neely, whose term of office finishes at the end of February. Dr O’Brien, who has a PhD in Physics from the University of Sheffield and a degree in Materials Science from Trinity College Dublin, joined Cambridge Enterprise from Trinity College Dublin, where he was Chief Innovation Officer. At Cambridge Enterprise he has led a new strategy which has supported activities such as the establishment of Innovate Cambridge, the formation of Founders at the University of Cambridge, the integration and renewal of ideaSpace and the commencement of the Technology Investment Fund to support the development of University intellectual property.

“The University and the broader Cambridge ecosystem are recognised as being globally leading for innovation, enterprise and entrepreneurship,” said Dr O’Brien.
“I have seen this first-hand from my role as Chief Executive of Cambridge Enterprise and in helping to establish Innovate Cambridge. I look forward to my new role as Pro-Vice-Chancellor for Innovation and continuing to enhance the ambition for how the University of Cambridge can enable impact from our research and through our innovation partnerships.”

He replaces Professor Andy Neely, who has served as Pro-Vice-Chancellor for Enterprise and Business Relations since March 2017, and received an OBE for services to University/Industry Collaboration in 2020. Professor Neely’s achievements as Pro-Vice-Chancellor included leading the University’s Recovery Programme helping the University respond to the coronavirus pandemic, overseeing the establishment of the Change and Programme Management Board, as well as building far stronger links with the local and regional innovation community through important initiatives such as Innovate Cambridge.

Professor Neely said: “I’m honoured to have served in this role for seven years and delighted that Diarmuid has been appointed as my successor. The University of Cambridge’s impact on the world is significantly enhanced by our engagement with business and our world-leading innovation ecosystem and I have no doubt that this will go from strength to strength under Diarmuid’s leadership”.

The University of Cambridge Vice-Chancellor Professor Deborah Prentice welcomed Dr O’Brien to the role and thanked Professor Neely for his service.

She said: “I warmly congratulate Diarmuid on being appointed to this important role. With his wealth of experience in driving innovation, most recently at Cambridge Enterprise, he will help ensure no momentum is lost in the handover from the previous Pro-Vice-Chancellor, Andy Neely.
“I would like to put on record my sincerest thanks to Andy for his service to Cambridge, both as an academic leader and as Pro-Vice-Chancellor for Enterprise and Business Relations. I know I speak on behalf of all University colleagues when I say how grateful we are for what he has achieved in that role over the past seven years.”

The Pro-Vice-Chancellor for Innovation is broadly the same role as the current Pro-Vice-Chancellor for Enterprise and Business Relations role, but with an enhanced focus on industry, enterprise and innovation.

Dr O’Brien takes up the role in April, and will remain in his current capacity at Cambridge Enterprise for one day a week to provide continuity and connection with Cambridge Enterprise.

There are five Pro-Vice-Chancellors at the University of Cambridge. Their role is to work in partnership with senior administrators to help drive strategy and policy development. The Pro-Vice-Chancellors also support the Vice-Chancellor in providing academic leadership to the University.
 

Dr Diarmuid O’Brien has been appointed as the University of Cambridge’s new Pro-Vice-Chancellor for Innovation. He is currently Chief Executive of Cambridge Enterprise, the University’s commercialisation arm which supports academics, researchers, staff and students in achieving knowledge transfer and research impact.

RMG PhotographyDr Diarmuid O’Brien


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Removing largest wine glass serving reduces amount of wine sold in bars and pubs

University News - Thu, 18/01/2024 - 19:00

While only modest, the finding could provide one way of nudging customers to drink less alcohol and have an impact at a population level, say the researchers.

Alcohol consumption is the fifth largest contributor to premature death and disease worldwide. In 2016 it was estimated to have caused approximately 3 million deaths worldwide.

There are many factors that influence how much we drink, from advertising to labelling to availability and cost. Previous research from the Behaviour and Health Research Unit at Cambridge has shown that even glass size can influence how much alcohol is consumed.

In research published today in PLOS Medicine, the Cambridge team carried out a study in 21 licensed premises (mainly pubs) in England to see whether removing their largest serving of wine by the glass for four weeks would have an impact on how much wine is consumed. Wine is the most commonly drunk alcoholic drink in the UK and Europe. Twenty of the premises completed the experiment as designed by the researchers and were included in the final analysis.

After adjusting for factors such as day of the week and total revenue, the researchers found that removing the largest wine glass serving led to an average (mean) decrease of 420ml of wine sold per day per venue – equating to a 7.6% decrease.

There was no evidence that sales of beer and cider increased, suggesting that people did not compensate for their reduced wine consumption by drinking more of these alcoholic drinks. There was also no evidence that it affected total daily revenues, implying that participating licensed premises did not lose money as a result of removing the largest serving size for glasses of wine, perhaps due to the higher profit margins of smaller serving sizes of wine. However, it is important to note that the study was not designed to provide statistically meaningful data on these points.

First author Dr Eleni Mantzari, from the University of Cambridge, said: “It looks like when the largest serving size of wine by the glass was unavailable, people shifted towards the smaller options, but didn’t then drink the equivalent amount of wine.

“People tend to consume a specific number of ‘units’ – in this case glasses – regardless of portion size. So, someone might decide at the outset they’ll limit themselves to a couple of glasses of wine, and with less alcohol in each glass they drink less overall.”

Professor Dame Theresa Marteau, the study’s senior author and an Honorary Fellow at Christ’s College Cambridge, added: “It’s worth remembering that no level of alcohol consumption is considered safe for health, with even light consumption contributing to the development of many cancers. Although the reduction in the amount of wine sold at each premise was relatively small, even a small reduction could make a meaningful contribution to population health.”

Evidence suggests that the public prefer information-based interventions, such as health warning labels, to reductions in serving or package sizes. However, in this study, managers at just four of the 21 premises reported receiving complaints from customers.

The researchers note that although the intervention would potentially be acceptable to pub or bar managers, given there was no evidence that it can result in a loss in revenue, a nationwide policy would likely be resisted by the alcohol industry given its potential to reduce sales of targeted drinks. Public support for such a policy would depend on its effectiveness and how clearly this was communicated.

The research was funded by Wellcome.

Reference
Mantzari, E et al. Impact on wine sales of removing the largest serving size by the glass: an A-B-A reversal trial in 21 pubs, bars and restaurants in England. PLOS Medicine; DOI: 10.1371/journal.pmed.1004313

Taking away the largest serving of wine by the glass – in most cases the 250ml option – led to an average reduction in the amount of wine sold at pubs and bars of just under 8%, new research led by a team at the University of Cambridge has discovered.

When the largest serving size of wine by the glass was unavailable, people shifted towards the smaller options, but didn’t then drink the equivalent amount of wineEleni Mantzarihcdeharder (Pixabay)Red and white wine in glasses


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Public Domain

Galaxy mergers solve early Universe mystery

University News - Thu, 18/01/2024 - 16:28

This has solved one of the most puzzling mysteries in astronomy – why astronomers detect light from hydrogen atoms that should have been entirely blocked by the pristine gas that formed after the Big Bang.

These new observations have found small, faint objects surrounding the galaxies that show the ‘inexplicable’ hydrogen emission. In conjunction with state-of-the-art simulations of galaxies in the early Universe, the observations have shown that the chaotic merging of these neighbouring galaxies is the source of this hydrogen emission. The results are reported in the journal Nature Astronomy.

Light travels at a finite speed (300 000 km a second), which means that the further away a galaxy is, the longer it has taken the light from it to reach our Solar System. As a result, not only do observations of the most distant galaxies probe the far reaches of the Universe, but they also allow us to study the Universe as it was in the past.

To study the early Universe, astronomers require exceptionally powerful telescopes that are capable of observing very distant – and therefore very faint – galaxies. One of Webb’s key capabilities is its ability to observe these galaxies, and probe the early history of the Universe.

The earliest galaxies were sites of vigorous and active star formation, and were rich sources of a type of light emitted by hydrogen atoms called Lyman-α emission. However, during the epoch of reionisation, an immense amount of neutral hydrogen gas surrounded these stellar nurseries. Furthermore, the space between galaxies was filled by more of this neutral gas than is the case today. The gas can effectively absorb and scatter this kind of hydrogen emission, so astronomers have long predicted that the abundant Lyman-α emission released in the early Universe should not be observable today.

This theory has not always stood up to scrutiny, however, as examples of early hydrogen emission have previously been observed by astronomers. This has presented a mystery: how is it that this hydrogen emission – which should have long since been absorbed or scattered – is being observed?

“One of the most puzzling issues that previous observations presented was the detection of light from hydrogen atoms in the very early Universe, which should have been entirely blocked by the pristine neutral gas that was formed after the Big Bang,” said lead author Callum Witten from Cambridge’s Institute of Astronomy. “Many hypotheses have previously been suggested to explain the great escape of this ‘inexplicable’ emission.”

The team’s breakthrough came thanks to Webb’s combination of angular resolution and sensitivity. The observations with Webb’s NIRCam instrument were able to resolve smaller, fainter galaxies that surround the bright galaxies from which the ‘inexplicable’ hydrogen emission had been detected. In other words, the surroundings of these galaxies appear to be a much busier place than we previously thought, filled with small, faint galaxies.

These smaller galaxies were interacting and merging with one another, and Webb has revealed that galaxy mergers play an important role in explaining the mystery emission from the earliest galaxies.

“Where Hubble was seeing only a large galaxy, Webb sees a cluster of smaller interacting galaxies, and this revelation has had a huge impact on our understanding of the unexpected hydrogen emission from some of the first galaxies,” said co-author Sergio Martin-Alvarez from Stanford University.

The team then used computer simulations to explore the physical processes that might explain their results. They found that the rapid build-up of stellar mass through galaxy mergers both drove strong hydrogen emission and facilitated the escape of that radiation via channels cleared of the abundant neutral gas. So, the high merger rate of the previously unobserved smaller galaxies presented a compelling solution to the long-standing puzzle of the ‘inexplicable’ early hydrogen emission.

The team is planning follow-up observations with galaxies at various stages of merging, to continue to develop their understanding of how the hydrogen emission is ejected from these changing systems. Ultimately, this will enable them to improve our understanding of galaxy evolution.

Reference:
Callum Witten et al. ‘Deciphering Lyman-α emission deep into the epoch of reionization.’ Nature Astronomy (2024). DOI: 10.1038/s41550-023-02179-3

Adapted from an ESA press release.

A team of astronomers, led by the University of Cambridge, has used the NASA/ESA/CSA James Webb Space Telescope to reveal, for the first time, what lies in the local environment of galaxies in the very early Universe.

ESA/Webb, NASA & CSA, S. Finkelstein (UT Austin), M. Bagley (UT Austin), R. Larson (UT Austin), A. Pagan (STScI), C. Witten, M. Zooming in on three neighbouring galaxies (NIRCam image)


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

New admissions tests for 2024

University News - Thu, 18/01/2024 - 10:11

Cambridge and Imperial will provide two sets of tests. The Engineering and Science Admissions Test (ESAT) will be used for degree programmes in Engineering, Natural Sciences, Chemical Engineering and Biotechnology, and Veterinary Medicine at Cambridge, and Physics and most Engineering degrees at Imperial.

The Test of Mathematics for University Admission (TMUA) will be used for Economics and Computer Science degrees at Cambridge, and both the Economics, Finance and Data Science and Computing degrees at Imperial. A number of other UK universities will also use the TMUA for assessing applications for mathematically-based courses.

Pearson VUE is the certification and licensure arm of Pearson, the world’s leading learning company, providing assessment services to many institutions in the academic and admissions space. From October 2024 students will take a new computer based assessment at a Pearson VUE test centre, selecting from a global network of more than 5,500 locations in more than 180 countries. Mike Nicholson, Director of Recruitment, Admissions and Participation at Cambridge said “We are delighted to be able to provide computer based admissions tests from 2024, and in locations that take the burden off teachers and schools to act as test centres.”

Cambridge and Imperial will also be using the UCAT assessment for admission to their medical degrees from 2024, also provided through Pearson VUE, and Cambridge will continue to use the LNAT test for Law admissions.

Applicants will be required to pay an administration charge to take the tests, in line with other comparable institutions, but a fee waiver will be applied for UK-based applicants who are eligible for free school meals or who meet a number of other widening participation criteria. Nicholson added that “It is important that cost is not a barrier to participation, and the model we are using for the fee waivers has been successfully used for other admissions tests supported by Pearson”.

Lizzie Burrows, Director of Marketing, Recruitment and Admissions at Imperial said “The applicant experience is at the heart of our ambitions. With the number of applications expected to continue to rise over coming years, universities need to find ways to fairly select the best candidates while minimising the burden on our applicants.”

We hope that these tests, operating through Pearson VUE’s well established test centre network  will encourage other universities to use the TMUA and ESAT as assessments and streamline the admissions process for students.”

To attract a wider range of applicants the TMUA and ESAT will run test-sittings in mid-October 2024 and early January 2025 to reflect the two main deadlines for courses in the UCAS admissions process. Applicants to Cambridge must take the Autumn sitting.

Matthew Poyiadgi, Vice President EMEA and Asia at Pearson VUE, commented “As academic settings and admissions programmes continue to evolve in an increasingly digital world, computer-based assessments drive greater efficiencies. We look forward to collaborating with Imperial and Cambridge on this transition and supporting applicants to these world-leading universities in proving their potential.’’ 

More information can be found here.

The University of Cambridge and Imperial College London are to launch a new joint venture to deliver admissions tests for science, engineering and mathematics based degree courses. The tests, which will be delivered by global assessments leader, Pearson VUE, aim to improve the experience of students applying for highly competitive undergraduate courses while helping universities to fairly assess the skills of the brightest applicants. 

We are delighted to be able to provide computer based admissions tests from 2024Mike NicholsonSenate House


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

‘Mini-placentas’ help scientists understand the causes of pre-eclampsia and pregnancy disorders

University News - Wed, 17/01/2024 - 16:00

The study, published today in Cell Stem Cell, shows that it is possible to experiment on a developing human placenta, rather than merely observe specimens, in order to study major disorders of pregnancy.

Successful pregnancy depends on the development of the placenta in the first few weeks of gestation. During this period, the placenta implants itself into the endometrium – the mucosal lining of the mother’s uterus.

Interactions between the cells of the endometrium and the cells of the placenta are critical to whether a pregnancy is successful. In particular, these interactions are essential to increase the maternal blood supply to the placenta, necessary for fetal growth and development.

When these interactions do not work properly, they can lead to complications, such as pre-eclampsia, a condition that causes high blood pressure during pregnancy. Pre-eclampsia occurs in around six in 100 first pregnancies and can put at risk the health of both the mother and the baby.

Professor Ashley Moffett from the Department of Pathology at the University of Cambridge said: “Most of the major disorders of pregnancy – pre-eclampsia, still birth, growth restriction, for example – depend on failings in the way the placenta develops in the first few weeks. This is a process that is incredibly difficult to study – the period after implantation, when the placenta embeds itself into the endometrium, is often described as a ‘black box of human development’.

“Over the past few years, many scientists – including several at Cambridge – have developed embryo-like models to help us understand early pre-implantation development. But further development is impeded because we understand so little about the interactions between the placenta and the uterus.”

Professor Moffett and colleagues at the Friedrich Miescher Institute, Switzerland, and the Wellcome Sanger Institute, Cambridge, have used ‘mini-placentas’ – a cellular model of the early stages of the placenta – to provide a window into early pregnancy and help improve our understanding of reproductive disorders. Known as ‘trophoblast organoids’, these are grown from placenta cells and model the early placenta so closely that they have previously been shown to record a positive response on an over-the-counter pregnancy test.

In previous work, Professor Moffett and colleagues identified genes that increase the risk of or protect against conditions such as pre-eclampsia. These highlighted the important role of immune cells uniquely found in the uterus, known as ‘uterine natural killer cells’, which cluster in the lining of the womb at the site where the placenta implants. These cells mediate the interactions between the endometrium and the cells of the placenta.

In their new study, her team applied proteins secreted by the uterine natural killer cells to the trophoblast organoids so that they could mimic the conditions where the placenta implants itself. They identified particular proteins that were crucial to helping the organoids develop. These proteins will contribute to successful implantation, allowing the placenta to invade the uterus and transform the mother’s arteries.

“This is the only time that we know of where a normal cell invades and transforms an artery, and these cells are coming from another individual, the baby,” said Professor Moffett, who is also a Fellow at King’s College, Cambridge.

“If the cells aren’t able to invade properly, the arteries in the womb don’t open up and so the placenta – and therefore the baby – are starved of nutrients and oxygen. That's why you get problems later on in pregnancy, when there just isn't enough blood to feed the baby and it either dies or is very tiny.”

The researchers also found several genes that regulate blood flow and help with this implantation, which Professor Moffett says provide pointers for future research to better understand pre-eclampsia and similar disorders.

Dr Margherita Turco, from the Friedrich Miescher Institute in Switzerland and co-lead of this work, added: “Despite affecting millions of women a year worldwide, we still understand very little about pre-eclampsia. Women usually present with pre-eclampsia at the end of pregnancy, but really to understand it – to predict it and prevent it – we have to look at what's happening in the first few weeks.

“Using ‘mini-placentas’, we can do just that, providing clues as to how and why pre-eclampsia occurs. This has helped us unpick some of the key processes that we should now focus on far more. It shows the power of basic science in helping us understand our fundamental biology, something that we hope will one day make a major difference to the health of mothers and their babies.”

The research was supported by Wellcome, the Royal Society, European Research Council and Medical Research Council.

Reference
Li, Q et al. Human uterine natural killer cells regulate differentiation of extravillous trophoblast early in pregnancy. Cell Stem Cell; 17 Jan 2024; DOI: doi.org/10.1016/j.stem.2023.12.013

Scientists have grown ‘mini-placentas’ in the lab and used them to shed light on how the placenta develops and interacts with the inner lining of the womb – findings that could help scientists better understand and, in future, potentially treat pre-eclampsia.

Most of the major disorders of pregnancy – pre-eclampsia, still birth, growth restriction, for example – depend on failings in the way the placenta develops in the first few weeks. This is a process that is incredibly difficult to study.Ashley MoffettFriedrich Miescher Institute/University of CambridgePlacental organoid (circle in the centre). Trophoblast cells are invading out of the organoid, mimicking placental cells invading the uterus in the early weeks of pregnancy.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Astronomers detect oldest black hole ever observed

University News - Wed, 17/01/2024 - 15:59

The international team, led by the University of Cambridge, used the NASA/ESA/CSA James Webb Space Telescope (JWST) to detect the black hole, which dates from 400 million years after the big bang, more than 13 billion years ago. The results, which lead author Professor Roberto Maiolino says are “a giant leap forward”, are reported in the journal Nature.

That this surprisingly massive black hole – a few million times the mass of our Sun – even exists so early in the universe challenges our assumptions about how black holes form and grow. Astronomers believe that the supermassive black holes found at the centre of galaxies like the Milky Way grew to their current size over billions of years. But the size of this newly-discovered black hole suggests that they might form in other ways: they might be ‘born big’ or they can eat matter at a rate that’s five times higher than had been thought possible.

According to standard models, supermassive black holes form from the remnants of dead stars, which collapse and may form a black hole about a hundred times the mass of the Sun. If it grew in an expected way, this newly-detected black hole would take about a billion years to grow to its observed size. However, the universe was not yet a billion years old when this black hole was detected.

“It’s very early in the universe to see a black hole this massive, so we’ve got to consider other ways they might form,” said Maiolino, from Cambridge’s Cavendish Laboratory and Kavli Institute for Cosmology. “Very early galaxies were extremely gas-rich, so they would have been like a buffet for black holes.”

Like all black holes, this young black hole is devouring material from its host galaxy to fuel its growth. Yet, this ancient black hole is found to gobble matter much more vigorously than its siblings at later epochs.

The young host galaxy, called GN-z11, glows from such an energetic black hole at its centre. Black holes cannot be directly observed, but instead they are detected by the tell-tale glow of a swirling accretion disc, which forms near the edges of a black hole. The gas in the accretion disc becomes extremely hot and starts to glow and radiate energy in the ultraviolet range. This strong glow is how astronomers are able to detect black holes.

GN-z11 is a compact galaxy, about one hundred times smaller than the Milky Way, but the black hole is likely harming its development. When black holes consume too much gas, it pushes the gas away like an ultra-fast wind. This ‘wind’ could stop the process of star formation, slowly killing the galaxy, but it will also kill the black hole itself, as it would also cut off the black hole’s source of ‘food’.

Maiolino says that the gigantic leap forward provided by JWST makes this the most exciting time in his career. “It’s a new era: the giant leap in sensitivity, especially in the infrared, is like upgrading from Galileo’s telescope to a modern telescope overnight,” he said. “Before Webb came online, I thought maybe the universe isn’t so interesting when you go beyond what we could see with the Hubble Space Telescope. But that hasn’t been the case at all: the universe has been quite generous in what it’s showing us, and this is just the beginning.”

Maiolino says that the sensitivity of JWST means that even older black holes may be found in the coming months and years. Maiolino and his team are hoping to use future observations from JWST to try to find smaller ‘seeds’ of black holes, which may help them untangle the different ways that black holes might form: whether they start out large or they grow fast.

The research was supported in part by the European Research Council, the Royal Society, and the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI).

 

Reference:
Roberto Maiolino et al. ‘A small and vigorous black hole in the early Universe.’ Nature (2024). DOI: 10.1038/s41586-024-07052-5

Researchers have discovered the oldest black hole ever observed, dating from the dawn of the universe, and found that it is ‘eating’ its host galaxy to death.

It’s a new era: the giant leap in sensitivity, especially in the infrared, is like upgrading from Galileo’s telescope to a modern telescope overnightRoberto MaiolinoNASA, ESA, and P. Oesch (Yale University)The GN-z11 galaxy, taken by the Hubble Space Telescope


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Public Domain

Role of inherited genetic variants in rare blood cancer uncovered

University News - Wed, 17/01/2024 - 10:03

Large-scale genetic analysis has helped researchers uncover the interplay between cancer-driving genetic mutations and inherited genetic variants in a rare type of blood cancer.

Researchers from the University of Cambridge, Wellcome Sanger Institute, and collaborators, combined various comprehensive data sets to understand the impact of both cancer-driving spontaneous mutations and inherited genetic variation on the risk of developing myeloproliferative neoplasms (MPN).

The study, published today in the journal Nature Genetics, describes how inherited genetic variants can influence whether a spontaneous mutation in a particular gene increases the risk of developing this rare blood cancer.

This analysis has an impact on current clinical predictions of disease development in individuals. Further research is required to understand the biological mechanisms behind how these inherited genetic variants influence the chances of developing rare blood cancer. In the future, this knowledge could aid drug development and interventions that reduce the risk of disease.

Myeloproliferative neoplasms, MPNs, are a group of rare, chronic, blood cancers. There are around 4,000 cases of MPN in the UK each year. These occur when the bone marrow overproduces blood cells, which can result in blood clots and bleeding. MPNs can also progress into other forms of blood cancer, such as leukaemia.

In the population, there is a large amount of natural variation between individuals’ blood cells, which can affect the amount of blood cells a person has and their particular traits. This is because multiple different genes can influence blood cell features in an individual. During routine blood tests, researchers take known information about these genes and analyse the variation to give a genetic risk score, which is how likely that individual is to develop a disease over their lifetime.  

MPNs have been linked to random somatic mutations in certain genes including in a gene called JAK2. However, mutated JAK2 is commonly found in the global population, and the vast majority of these individuals do not have or go on to develop MPN.

Whilst previous studies have identified over a dozen associated inherited genetic variants that increase the risk of MPN, these studies insufficiently explain why most individuals in the population do not go on to develop MPN.

This new study, from the Wellcome Sanger Institute and collaborators, combined information on the known somatic driver mutations in MPN, inherited genetic variants, and genetic risk scores from individuals with MPN.

They found that the inherited variants that cause natural blood cell variation in the population also impact whether a JAK2 somatic mutation will go on to cause MPN.  They also found that individuals with an inherited risk of having a higher blood cell count could display MPN features in the absence of cancer-driving mutations, thus, mimicking disease.

Dr Jing Guo, from the University of Cambridge and the Wellcome Sanger Institute and first author of the study, said: “Our large-scale statistical study has helped fill the knowledge gaps in how variants in DNA, both inherited and somatic, interact to influence complex disease risk. By combining these three different types of datasets we were able to get a more complete picture of how these variants combine to cause blood disorders.”

Professor Nicole Soranzo, co-senior author from the University of Cambridge, the Wellcome Sanger Institute, and Human Technopole, Italy, said: “There has been increasing realisation that human diseases have complex causes involving a combination of common and rare inherited genetic variants with different severity.

“We have previously shown that variation in blood cell parameters and function has complex genetic variability by highlighting thousands of genetic changes that affect different gene functions. Here, we show for the first time that common variants in these genes also affect blood cancers, independent of causative somatic mutations. This confirms a new important contribution of normal variability beyond complex disease, contributing to our understanding of myeloproliferative neoplasms and blood cancer more generally.”

Dr Jyoti Nangalia, co-senior author from the Wellcome-MRC Cambridge Stem Cell Institute at the University of Cambridge, and the Wellcome Sanger Institute, said: “We have a good understanding of the genetic causes of myeloproliferative neoplasms. In fact, many of these genetic mutations are routine diagnostic tests in the clinic. However, these mutations can often be found in healthy individuals without the disease.

“Our study helps us understand how inherited DNA variation from person to person can interact with cancer-causing mutations to determine whether disease occurs in the first place, and how this can alter the type of any subsequent disease that emerges. Our hope is that this information can be incorporated into future disease prediction efforts.”  

This research was funded by Cancer Research UK and Wellcome.

Reference

J. Guo, K. Walter, P. M. Quiros, et al. ‘Inherited polygenic effects on common hematological traits influence clonal selection on JAK2V617F and the development of myeloproliferative neoplasms.’ Jan 2024,  Nature Genetics. DOI: 10.1038/s41588-023-01638-x

Adapted from a press release by the Wellcome Sanger Institute

Combining three different sources of genetic information has allowed researchers to further understand why only some people with a common mutation go on to develop rare blood cancer

Our hope is that this information can be incorporated into future disease prediction effortsJyoti NangaliaPhoto by Sangharsh Lohakare on UnsplashDNA


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution-Noncommerical

Significant gaps in COVID-19 vaccine uptake may have led to over 7,000 hospitalisations and deaths

University News - Mon, 15/01/2024 - 23:30

The findings, published today in The Lancet, suggest that more than 7,000 hospitalisations and deaths might have been averted in summer 2022 if the UK had had better vaccine coverage.

With COVID-19 cases on the rise and a new variant strain recently identified, this research provides a timely insight into vaccine uptake and hesitancy and could inform policy-makers.

The research relied on secure access to anonymised health data for everyone in all four nations of the UK, an advance which has only become possible during the pandemic.

Co-author Angela Wood, Professor of Health Data Science at the Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge and Associate Director of the British Heart Foundation Data Science Centre said: “This is the first epidemiological study to use individual-level anonymised health data covering the entire UK population. We have created a detailed, UK-wide picture of who is under-vaccinated against COVID-19 and the associated risks of under-vaccination.

“These results can be used to help create health policy and public health interventions to improve vaccine uptake. This approach could be extended to many other areas of medicine with great potential for new discoveries in the understanding and treatment of disease.”

Early COVID-19 vaccine rollout began strongly in the UK, with over 90% of the population over the age of 12 vaccinated with at least one dose by January 2022. However, rates of subsequent booster doses across the UK were not fully understood until now.

Scientists from England, Scotland, Northern Ireland and Wales – led by Health Data Research UK (HDR UK) and the University of Edinburgh – studied securely-held, routinely collected NHS data from everyone over five years of age during 1 June to 30 September 2022. All data was de-identified and available only to approved researchers.

Data from across the four countries was then pooled and harmonised, a feat that was not possible until now. People were grouped by vaccine status, with under-vaccination defined as not having had all doses of a vaccine for which that a person was eligible.

The findings reveal that the proportion of people who were under-vaccinated on 1 June 2022 ranged between one third and one half of the population – 45.7% for England, 49.8% for Northern Ireland, 34.2% for Scotland and 32.8% Wales.

Mathematical modelling indicated that 7,180 hospitalisations and deaths out of around 40,400 severe COVID-19 outcomes during four months in summer 2022 might have been averted, if the UK population was fully vaccinated.

Under-vaccination was related to significantly more hospitalisations and deaths across all age groups studied, with under-vaccinated people over 75 more than twice as likely to have a severe COVID-19 outcome than those who were fully protected.

The highest rates of under-vaccination were found in younger people, men, people in areas of higher deprivation, and people of non-white ethnicity.

Researchers say the study – the largest ever study carried out in the UK – also ushers in a new era for UK science by overcoming challenges in uniting NHS data that is gathered and stored in different ways between devolved nations.

Professor Cathie Sudlow, Chief Scientist at Health Data Research UK and Director of the British Heart Foundation (BHF) Data Science Centre, said: “The infrastructure now exists to make full use of the potential of routinely collected data in the NHS across the four nations of the UK. We believe that we could and should extend these approaches to many other areas of medicine, such as cancer, heart disease and diabetes to search for better understanding, prevention and treatment of disease."

Professor Sir Aziz Sheikh, Director of the Usher Institute at the University of Edinburgh, HDR UK Research Director and study co-lead, said: “Large-scale data studies have been critical to pandemic management, allowing scientists to make policy-relevant findings at speed. COVID-19 vaccines save lives. As new variants emerge, this study will help to pinpoint groups of our society and areas of the country where public health campaigns should be focused and tailored for those communities.”

Reference
HDR UK COALESCE Consortium. Undervaccination and severe COVID-19 outcomes: meta-analysis of national cohort studies in England, Northern Ireland, Scotland, and Wales. Lancet; 16 Jan 2024; DOI: 0.1016/S0140-6736(23)02622-3

Adapted from a release from HDR-UK

Between a third and a half of the populations of the four UK nations had not had the recommended number of COVID vaccinations and boosters by summer 2022, according to the first research study to look at COVID-19 vaccine coverage of the entire UK population.

These results can be used to help create health policy and public health interventions to improve vaccine uptakeAngela WoodKoldoyChris (Getty Images)Girl being injected with COVID-19 vaccine


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Accelerating how new drugs are made with machine learning

University News - Mon, 15/01/2024 - 10:05

Predicting how molecules will react is vital for the discovery and manufacture of new pharmaceuticals, but historically this has been a trial-and-error process, and the reactions often fail. To predict how molecules will react, chemists usually simulate electrons and atoms in simplified models, a process that is computationally expensive and often inaccurate.

Now, researchers from the University of Cambridge have developed a data-driven approach, inspired by genomics, where automated experiments are combined with machine learning to understand chemical reactivity, greatly speeding up the process. They’ve called their approach, which was validated on a dataset of more than 39,000 pharmaceutically relevant reactions, the chemical ‘reactome’.

Their results, reported in the journal Nature Chemistry, are the product of a collaboration between Cambridge and Pfizer.

“The reactome could change the way we think about organic chemistry,” said Dr Emma King-Smith from Cambridge’s Cavendish Laboratory, the paper’s first author. “A deeper understanding of the chemistry could enable us to make pharmaceuticals and so many other useful products much faster. But more fundamentally, the understanding we hope to generate will be beneficial to anyone who works with molecules.”

The reactome approach picks out relevant correlations between reactants, reagents, and performance of the reaction from the data, and points out gaps in the data itself. The data is generated from very fast, or high throughput, automated experiments.

“High throughput chemistry has been a game-changer, but we believed there was a way to uncover a deeper understanding of chemical reactions than what can be observed from the initial results of a high throughput experiment,” said King-Smith.

“Our approach uncovers the hidden relationships between reaction components and outcomes,” said Dr Alpha Lee, who led the research. “The dataset we trained the model on is massive – it will help bring the process of chemical discovery from trial-and-error to the age of big data.”

In a related paper, published in Nature Communications, the team developed a machine learning approach that enables chemists to introduce precise transformations to pre-specified regions of a molecule, enabling faster drug design.

The approach allows chemists to tweak complex molecules – like a last-minute design change – without having to make them from scratch. Making a molecule in the lab is typically a multi-step process, like building a house. If chemists want to vary the core of a molecule, the conventional way is to rebuild the molecule, like knocking the house down and rebuilding from scratch. However, core variations are important to medicine design.

A class of reactions, known as late-stage functionalisation reactions, attempts to directly introduce chemical transformations to the core, avoiding the need to start from scratch. However, it is challenging to make late-stage functionalisation selective and controlled – there are typically many regions of the molecules that can react, and it is difficult to predict the outcome.

“Late-stage functionalisations can yield unpredictable results and current methods of modelling, including our own expert intuition, isn't perfect,” said King-Smith. “A more predictive model would give us the opportunity for better screening.”

The researchers developed a machine learning model that predicts where a molecule would react, and how the site of reaction vary as a function of different reaction conditions. This enables chemists to find ways to precisely tweak the core of a molecule.

“We trained the model on a large body of spectroscopic data – effectively teaching the model general chemistry – before fine-tuning it to predict these intricate transformations,” said King-Smith. This approach allowed the team to overcome the limitation of low data: there are relatively few late-stage functionalisation reactions reported in the scientific literature. The team experimentally validated the model on a diverse set of drug-like molecules and was able to accurately predict the sites of reactivity under different conditions.

“The application of machine learning to chemistry is often throttled by the problem that the amount of data is small compared to the vastness of chemical space,” said Lee. “Our approach – designing models that learn from large datasets that are similar but not the same as the problem we are trying to solve – resolves this fundamental low-data challenge and could unlock advances beyond late-stage functionalisation.”  

The research was supported in part by Pfizer and the Royal Society.

References:
Emma King-Smith et al. ‘Predictive Minisci Late Stage Functionalization with Transfer Learning.’ Nature Communications (2023). DOI: 10.1038/s41467-023-42145-1

Emma King-Smith et al. ‘Probing the Chemical "Reactome" with High Throughput Experimentation Data.’ Nature Chemistry (2023). DOI: 10.1038/s41557-023-01393-w

Researchers have developed a platform that combines automated experiments with AI to predict how chemicals will react with one another, which could accelerate the design process for new drugs.

A deeper understanding of the chemistry could enable us to make pharmaceuticals and so many other useful products much faster. Emma King-SmithBlackJack3D via Getty ImagesDigital Molecular Structure Concept


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Award winning author and former MPhil in African Studies student Mary Ononokpono talks about how her work has been inspired by our MPhil programme

 

CAS Mailing list