skip to content

Centre of African Studies

 
Subscribe to University News feed
Updated: 52 min 41 sec ago

More than 1,000 may have died in Nazi camps on island of Alderney, report finds

Wed, 22/05/2024 - 07:51

A review of evidence, gathered by a panel of 13 international experts, including Cambridge archaeologist Dr Gilly Carr, has sought to give the most accurate possible assessment of how many prisoners and labourers died on the Channel Island between 1941 to 1945.

During this time, crimes were committed against forced and slave labourers, transported from countries across Europe and brought to Alderney to construct fortifications as part of the German war effort. Housed in camps that shared many of the traits of those in mainland Europe, these labourers were subject to atrocious living and working conditions, and, in some cases, executions.  

Commissioned by Lord Eric Pickles, UK Special Envoy on Post Holocaust Issues, the investigation aims to dispel conspiracy theories and provide the most accurate figure possible of those who lost their lives on the island. The report also aims to bring justice for those who died, and ensure that this period of history, and the Holocaust, is remembered fully and accurately.

The team’s calculation of the minimum number of prisoners or labourers sent to Alderney throughout the German occupation stands between 7,608 and 7,812 people. Death figures calculated after Alderney was liberated by the British originally suggested that 389 people died as a result of ill-treatment. Now, the Alderney Expert Review Panel has found that the number of deaths in Alderney is likely to range between 641 and 1,027. 

The review panel has concluded that there is no evidence that many thousands of victims died, and that claims Alderney constituted a ‘mini-Auschwitz’ are unsubstantiated.  

Dr Carr, Associate Professor in Archaeology at Cambridge’s Institute of Continuing Education, and Fellow of St Catharine’s College, who co-ordinated the panel, said: “I am proud of the way the team of experts came together to provide answers to the questions set by Lord Pickles. It shows what can be achieved when you bring together the right people with the right experience and expertise who are committed to working in memory of those who suffered in Alderney during the Occupation.”

Chief Rabbi Sir Ephraim Mirvis KBE said: “The findings of the Alderney Review are a significant and welcome development. Having an authoritative account of this harrowing element of the island’s history is vital. It enables us to accurately remember the individuals who so tragically suffered and died on British soil. Marking the relevant sites will now be an appropriate step to take, to ensure that this information is widely available.”

The panel also sought to discover why German perpetrators were not tried by Britain for war crimes committed in Alderney. It concluded that a war crimes investigation carried out in Alderney immediately after the war was “wholly serious in intent”. But because most of the victims were Soviet citizens, the case was handed to the Russians. In exchange, Germans who murdered British servicemen in Stalag Luft III during the “Great Escape” were handed over to Britain.

The report says the Soviet Union did not follow up the Alderney case and were thus responsible for the failure to bring the perpetrators to justice, causing much anger among members of the British government.

The number of people killed during the Nazi Occupation of Alderney is far greater than the figure previously thought, according to a new report published today, which says more than 1,000 could have perished.

[The report] shows what can be achieved when you bring together the right people with the right experience and expertise who are committed to working in memory of those who suffered in Alderney during the OccupationDr Gilly Carr, Institute of Continuing Education"Nazi Fire Control Tower on Alderney" by neilalderney123 is licensed under CC BY-NC 2.0.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution

Cambridge experts awarded 2024 Academy of Medical Sciences Fellowships

Tue, 21/05/2024 - 00:01

Professor Nita Forouhi from the Medical Research Council (MRC) Epidemiology Unit and Professor Susan Gathercole from the MRC Cognition and Brain Sciences Unit join an esteemed Fellowship of over 1,400 researchers who have been recognised for their remarkable contributions to advancing biomedical and health sciences, ground-breaking research discoveries and translating developments into benefits for patients and wider society.

Professor Nita Forouhi is a clinical scientist whose research is focused on the link between diet, nutrition and the risk of diabetes, obesity and related disorders. She is Professor of Population Health and Nutrition and leads the Nutritional Epidemiology programme, which was awarded the Vice-Chancellor’s Best Impact Award in 2016. She frequently engages with the media to promote knowledge in the area of diet and health.

Professor Susan Gathercole is a cognitive psychologist with interests in memory and learning, including the causes of specific learning difficulties in children and how they might be overcome. Susan became a Fellow of the British Academy in 2014 and was awarded an OBE for services to psychology and education in 2016.

Professor Andrew Morris PMedSci, President of the Academy of Medical Sciences, said: “It is an honour to welcome these brilliant minds to our Fellowship. Our new Fellows lead pioneering work in biomedical research and are driving remarkable improvements in healthcare. We look forward to working with them, and learning from them, in our quest to foster an open and progressive research environment that improves the health of people everywhere through excellence in medical science.

“It is also welcoming to note that this year's cohort is our most diverse yet, in terms of gender, ethnicity and geography. While this progress is encouraging, we recognise that there is still much work to be done to truly diversify our Fellowship. We remain committed to our EDI goals and will continue to take meaningful steps to ensure our Fellowship reflects the rich diversity of the society we serve."

The new Fellows will be formally admitted to the Academy at a ceremony on Wednesday 18 September 2024.

Two Cambridge Fellows are among the new Academy of Medical Sciences Fellows announced today.

Academy of Medical Sciences Academy of Medical Sciences logo


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

“I feel like I’m Alice in Wonderland”: nightmares and ‘daymares’ could be early warning signs of autoimmune disease

Mon, 20/05/2024 - 23:30

The researchers argue that there needs to be greater recognition that these types of mental health and neurological symptoms can act as an early warning sign that an individual is approaching a ‘flare’, where their disease worsens for a period.

In a study published today in eClinicalMedicine, researchers surveyed 676 people living with lupus and 400 clinicians, as well as carrying out detailed interviews with 69 people living with systemic autoimmune rheumatic diseases (including lupus) and 50 clinicians. Lupus is an autoimmune inflammatory disease known for its effect on many organs including the brain.

In the study, the team also asked patients about the timing of 29 neurological and mental health symptoms (such as depression, hallucinations and loss of balance). In interviews, patients were also asked if they could list the order that symptoms usually occurred when their disease was flaring.

One of the more common symptoms reported was disrupted dream sleep, experienced by three in five patients, a third of whom reported this symptom appearing over a year before onset of lupus disease.

Just under one in four patients reported hallucinations, though for 85% of these the symptom did not appear until around the onset of disease or later. When the researchers interviewed the patients, however, they found that three in five lupus patients and one in three with other rheumatology-related conditions reported increasingly disrupted dreaming sleep – usually vivid and distressing nightmares – just before their hallucinations. These nightmares were often vivid and distressing, involving being attacked, trapped, crushed, or falling.

One patient from Ireland described their nightmares as: “Horrific, like murders, like skin coming off people, horrific…I think it’s like when I’m overwhelmed which could be the lupus being bad…So I think the more stress my body is under then the more vivid and bad the dreaming would be.”

The study interviewers found that using the term ‘daymares’ to talk about hallucinations often led to a ‘lightbulb’ moment for patients, and they felt that it was a less frightening and stigmatised word.

A patient from England said: “[When] you said that word daymare and as soon as you said that it just made sense, it’s like not necessarily scary, it’s just like you’ve had a dream and yet you’re sitting awake in the garden…I see different things, it’s like I come out of it and it’s like when you wake up and you can’t remember your dream and you’re there but you’re not there… it’s like feeling really disorientated, the nearest thing I can think of is that I feel like I’m Alice in Wonderland.”

Patients experiencing hallucinations were reluctant to share their experiences, and many specialists said they had never considered nightmares and hallucinations as being related to disease flares. Most said they would talk to their patients about nightmares and hallucinations in future, agreeing that recognising these early flare symptoms may provide an ‘early warning system’ enabling them to improve care and even reduce clinic times by averting flares at any earlier stage.

Lead author Dr Melanie Sloan from the Department of Public Health and Primary Care at the University of Cambridge said: “It’s important that clinicians talk to their patients about these types of symptoms and spend time writing down each patient’s individual progression of symptoms. Patients often know which symptoms are a bad sign that their disease is about to flare, but both patients and doctors can be reluctant to discuss mental health and neurological symptoms, particularly if they don’t realise that these can be a part of autoimmune diseases.”  

Senior study author Professor David D’Cruz from Kings College London said: “For many years, I have discussed nightmares with my lupus patients and thought that there was a link with their disease activity. This research provides evidence of this, and we are strongly encouraging more doctors to ask about nightmares and other neuropsychiatric symptoms – thought to be unusual, but actually very common in systemic autoimmunity – to help us detect disease flares earlier.”

The importance of recognising these symptoms was highlighted by reports that some patients had initially been misdiagnosed or even hospitalised with a psychotic episode and/or suicidal ideation, which was only later found to be the first sign of their autoimmune disease.

One patient from Scotland said: “At 18 I was diagnosed with borderline personality disorder, and then 6 months later with lupus at 19, so it’s all very close together and it was strange that when my [borderline personality disorder] got under control and my lupus got under control was within 6 months.”

A nurse from Scotland said: “I’ve seen them admitted for an episode of psychosis and the lupus isn’t screened for until someone says ‘oh I wonder if it might be lupus’...but it was several months and very difficult… especially with young women and it’s learning more that that is how lupus affects some people and it’s not anti-psychotic drugs they needed, it’s like a lot of steroids.”

Professor Guy Leschziner, a study author and neurologist at Guys’ and St Thomas’ hospital, and author of The Secret World of Sleep, said: "We have long been aware that alterations in dreaming may signify changes in physical, neurological and mental health, and can sometimes be early indicators of disease. However, this is the first evidence that nightmares may also help us monitor such a serious autoimmune condition like lupus, and is an important prompt to patients and clinicians alike that sleep symptoms may tell us about impending relapse."

The research was funded by The Lupus Trust and is part of the INSPIRE project (Investigating Neuropsychiatric Symptom Prevalence and Impact in Rheumatology patient Experiences).

Reference
Sloan, M. et al. Neuropsychiatric prodromes and symptom timings in relation to disease onset and/or flares in SLE: results from the mixed methods international INSPIRE study. eClinicalMedicine; 21 May 2024; DOI: 10.1016/j.eclinm.2024.102634

An increase in nightmares and hallucinations – or ‘daymares’ – could herald the onset of autoimmune diseases such as lupus, say an international team led by researchers at the University of Cambridge and King’s College London.

Both patients and doctors can be reluctant to discuss mental health and neurological symptoms, particularly if they don’t realise that these can be a part of autoimmune diseasesMel SloanDavid Wall (Getty Images)A ghostly figure silhouetted between trees in a forest


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Winners of Vice-Chancellor’s Social Impact Awards 2024 announced

Mon, 20/05/2024 - 16:04

The awards, organised by Cambridge Hub and sponsored by the Vice Chancellor’s Office, recognise and celebrate exceptional achievement in contributing to society. University of Cambridge Vice-Chancellor Professor Deborah Prentice hosted the ceremony on 30 April, which saw 15 students recognised with awards.

Undergraduate Student Awards

Sakshi Jha from Clare College

Sakshi is a law finalist, who co-founded Cambridge Freedom from Torture, a refugee-aid group, where she formed part of the first student volunteering convoy to Calais, France. Sakshi is also leading a policy paper examining UK asylum policy; she is on the Managing Board of the Cambridge Human Rights Law Journal, and she is the founding Co-Editor in Chief of the Clare College Law Journal, where she interviewed Supreme Court Justices on prevalent legal issues such as human rights and international law enforcement. Sakshi has also aided fundraising efforts as Treasurer of Cambridge Amnesty International, and is a legal researcher for a social consulting firm, completing commissioned research for the United Nations High Commissioner for Refugees. 

Millie May from St John's College

Millie is a third-year politics and social anthropology undergraduate at St John's College. She is extremely passionate about climate and social justice-related work and has been the Lead of the Cambridge Climate Society Education Team for two academic years. She has led several projects in this role, the main being a campaign and student-faculty collaborative effort to integrate climate-related content across degrees at Cambridge, which she presented at COP28 to advocate for an integrated climate change curriculum on an international level.

Faustine Petron from Department of Sociology

Faustine is a final-year Human, Social and Political Sciences student specialising in Sociology. She is interested in gendered violence and feminist modes of resistance in the Maghreb and South Asia. Outside of academia, Faustine is an award-winning campaigner who works with the government and charities in using education as a tool to prevent gendered violence in the UK.

Josephine Somerville from Clare College

Jo is a third-year English student who has acted on her passion for making long-lasting positive changes for biodiversity and climate change, centrally in the role of lead of the Cambridge Climate Society Action team. In 2023 she led the prosecution in the Generation on Trial project and more recently has initiated collaborations between the student bodies and the local community. The most extensive campaign she has been running is the Pesticide-Free Cambridge Colleges Campaign. 

Master’s Student Award

Ming Hong Choi from Hughes Hall

Ming is a Master of Finance candidate at Cambridge Judge Business School, supported by both the UK Government’s Chevening Scholarship and Cambridge Trust Scholarship. He has made contributions across and beyond Cambridge through various leadership and advisory roles in youth leadership and development, real estate, investment, arts, sustainability, and educational initiatives.

PhD Student Awards

Samantha Hodder from Clare College

Sam is a final year PhD student studying cancer biology in the Department of Biochemistry. During a clinical placement early on in her PhD, Sam saw how important it is for children with cancer to be well informed about what they’ll be going through during the course of their treatment. This experience led Sam to begin the development of Chum, an app based learning and support platform for children with cancer and their families.

Swetha Kannan from Trinity Hall

Swetha is a PhD student at the Department of Medicine, as well as a successful junior scientist, educator, and social entrepreneur. Her key contributions to the local Cambridge community have been a result of her involvement with Make-A-Smile Cambridge, Student Minds Cambridge and the Cambridge Development Initiative. Swetha also established The Lalitha Foundation, a non-profit organisation in India dedicated to the betterment of lives of cancer- and post-sepsis patients.

Mine Koprulu from Pembroke College

Mine is a final year PhD student in Medical Sciences at MRC Epidemiology Unit. Improving the lives of others and making the world a better place to live in has been a long-standing aspiration of Mine’s. Professionally, she is aiming to improve healthcare by better understanding the biological basis of diseases and identifying effective treatment opportunities. In parallel, she also has been leading and contributing to various social impact projects, ranging from building more inclusive communities to promoting gender equity.

Nazifa Rafa from Lucy Cavendish College

Nazifa is a PhD student in Geography and a pioneering researcher dedicated to addressing pressing environmental and social justice issues. Her work spans biodiversity conservation, climate change, disaster risk, water and energy security, environmental health, and sustainable development, with a focus on empowering marginalised communities.

Mayumi Sato from Trinity Hall

Mayumi is a PhD student and Gates Cambridge Scholar, and the founder and director of SustainED. She has several years' experience working with climate-affected groups, predominantly in the Global South. Her academic and advocacy interests involve leading campaigns and initiatives for impact-based community development and justice-oriented research. Her interests focus on the intersection between social equity, environmental justice, and community engagement.

Volunteering Award

Kate Lucas from Homerton College

Kate is a third year undergraduate studying Manufacturing Engineering, who is dedicated to increasing diversity in engineering. As well as being President of Cambridge University Robotics Society and organising Unibots UK 2023 and 2024, she also mentors Year 13 students through platforms such as Zero Gravity and is also an active ambassador for Homerton Changemakers.

Innovation Award

William Lan from St Catharine's College

William is an MPhil student in Medical Science who has significantly contributed to mental health advocacy and community support. He is the Postgraduate Welfare Officer at St Catharine’s College, Vice-Chair of the International Students’ Campaign, and a Mental Health Foundation Young Leader, launching crucial welfare programmes and peer-support systems. William says his innovative methods and steadfast commitment to mental health advocacy have broadened his impact, establishing him as a force for positive change within and beyond the academic community.

Global Impact Award

Paulina Pérez-Duarte Mendiola from Sidney Sussex College

Paulina is a PhD candidate focusing on play and health at the Faculty of Education. She is a paediatrician, medical anthropologist and advocate for children’s holistic health and healthcare equity. Her work focuses on the role and impact of play in sick children’s development, learning and healthcare experiences. She is the Founder and Director of Semana JIM, which is the acronym of Play in Hospital Awareness Week in Mexico.

Impact in the Local Community Award

Zara Crapper from Robinson College

Zara is a third-year undergraduate in Natural Sciences. She has been involved in Scouting since she was young, and before her arrival in Cambridge she was an adult volunteer for a Cub Scout group in Andover. Since coming to Cambridge, she has opened a new section in a local Group, enabling the youngest members in the Scouting family from across the community to come together and learn in an enjoyable and inclusive environment. 

Sustainability Award

Clara Ma from Selwyn College

Clara is a Gates Cambridge Scholar at Selwyn College, an alumna of Churchill College and a PhD student in environmental science and policy at the Cambridge Centre for Environment, Energy and Natural Resource Governance. She assists departments, colleges, and organisations across the University in transitioning to more sustainable food procurement.

The winners of this year’s Vice-Chancellor’s Social Impact Awards have been announced.

The winners of this year’s Vice-Chancellor’s Social Impact Awards


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Earth’s earliest sea creatures drove evolution by stirring the water

Fri, 17/05/2024 - 16:01

A study involving the University of Cambridge has used virtual recreations of the earliest animal ecosystems, known as marine animal forests, to demonstrate the part they played in the evolution of our planet.

Using state-of-the-art computer simulations of fossils from the Ediacaran time period - approximately 565 million years ago - scientists discovered how these animals mixed the surrounding seawater. This may have affected the distribution of important resources such as food particles and could have increased local oxygen levels.

Through this process, the scientists think these early communities could have played a crucial role in shaping the initial emergence of large and complex organisms prior to a major evolutionary radiation of different forms of animal life, the so-called Cambrian ‘explosion’.

Over long periods of time, these changes might have allowed life forms to perform more complicated functions, like those associated with the evolution of new feeding and movement styles.

The study was led by the Natural History Museum and is published today in the journal Current Biology.

Dr Emily Mitchell at the University of Cambridge’s Department of Zoology, a co-author of the report, said: “It’s exciting to learn that the very first animals from 580 million years ago had a significant impact on their environment, despite not being able to move or swim. We’ve found they mixed up the water and enabled resources to spread more widely - potentially encouraging more evolution.”

Scientists know from modern marine environments that nutrients like food and oxygen are carried in seawater, and that animals can affect water flow in ways that influence the distribution of these resources.

To test how far back this process goes in Earth’s history, the team looked at some of the earliest examples of marine animal communities, known from rocks at Mistaken Point, Newfoundland, Canada. This world-famous fossil site perfectly preserves early life forms thanks to a cover of volcanic ash (sometimes referred to as an ‘Ediacaran Pompeii’).

Although some of these life forms look like plants, analysis of their anatomy and growth strongly suggests they are animals. Owing to the exceptional preservation of the fossils, the scientists could recreate digital models of key species, which were used as a basis for further computational analyses.

First author Dr Susana Gutarra, a Scientific Associate at the Natural History Museum, said: “We used ecological modelling and computer simulations to investigate how 3D virtual assemblages of Ediacaran life forms affected water flow. Our results showed that these communities were capable of ecological functions similar to those seen in present-day marine ecosystems.”

The study showed that one of the most important Ediacaran organisms for disrupting the flow of water was the cabbage-shaped animal Bradgatia, named after Bradgate Park in England. The Bradgatia from Mistaken Point are among some of the largest fossils known from this site, reaching diameters of over 50 centimetres.

Through their influence on the water around them, the scientists believe these Ediacaran organisms might have been capable of enhancing local oxygen concentrations. This biological mixing might also have had repercussions for the wider environment, possibly making other areas of the sea floor more habitable and perhaps even driving evolutionary innovation.

Dr Imran Rahman, lead author and Principal Researcher at the Natural History Museum, said: “The approach we’ve developed to study Ediacaran fossil communities is entirely new in palaeontology, providing us with a powerful tool for studying how past and present marine ecosystems might shape and influence their environment.”

The research was funded by the UK Natural Environment Research Council and the US National Science Foundation.

Reference: Gutarra-Diaz, S.“Ediacaran marine animal forests and the ventilation of the oceans.” May 2024, Current Biology. DOI: 10.1016/j.cub.2024.04.059

Adapted from a press release by the Natural History Museum

3D reconstructions suggest that simple marine animals living over 560 million years ago drove the emergence of more complex life by mixing the seawater around them

It’s exciting to learn that the very first animals from 580 million years ago had a significant impact on their environment, despite not being able to move or swim.Emily MitchellHugo Salais, Metazoa StudioArtistic recreation of the marine animal forest


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution-Noncommerical

Webb detects most distant black hole merger to date

Thu, 16/05/2024 - 18:34

Astronomers have found supermassive black holes with masses of millions to billions times that of the Sun in most massive galaxies in the local Universe, including in our Milky Way galaxy. These black holes have likely had a major impact on the evolution of the galaxies they reside in. However, scientists still don’t fully understand how these objects grew to become so massive.

The finding of gargantuan black holes already in place in the first billion years after the Big Bang indicates that such growth must have happened very rapidly, and very early. Now, the James Webb Space Telescope is shedding new light on the growth of black holes in the early Universe.

The new Webb observations have provided evidence for an ongoing merger of two galaxies and their massive black holes when the Universe was just 740 million years old. The system is known as ZS7.

Massive black holes that are actively accreting matter have distinctive spectrographic features that allow astronomers to identify them. For very distant galaxies, like those in this study, these signatures are inaccessible from the ground and can only be seen with Webb.

“We found evidence for very dense gas with fast motions in the vicinity of the black hole, as well as hot and highly ionised gas illuminated by the energetic radiation typically produced by black holes in their accretion episodes,” said lead author Dr Hannah Übler of Cambridge’s Cavendish Laboratory and Kavli Institute for Cosmology. “Thanks to the unprecedented sharpness of its imaging capabilities, Webb also allowed our team to spatially separate the two black holes.”

The team found that one of the two black holes has a mass that is 50 million times the mass of the Sun. “The mass of the other black hole is likely similar, although it is much harder to measure because this second black hole is buried in dense gas,” said team member Professor Roberto Maiolino, also from the Kavli Institute.

“Our findings suggest that merging is an important route through which black holes can rapidly grow, even at cosmic dawn,” said Übler. “Together with other Webb findings of active, massive black holes in the distant Universe, our results also show that massive black holes have been shaping the evolution of galaxies from the very beginning.”

The team notes that once the two black holes merge, they will also generate gravitational waves. Events like this will be detectable with the next generation of gravitational wave observatories, such as the upcoming Laser Interferometer Space Antenna (LISA) mission, which was recently approved by the European Space Agency and will be the first space-based observatory dedicated to studying gravitational waves.

This discovery was from observations made as part of the Galaxy Assembly with NIRSpec Integral Field Spectroscopy programme. The team has recently been awarded a new Large Programme in Webb’s Cycle 3 of observations, to study in detail the relationship between massive black holes and their host galaxies in the first billion years. An important component of this programme will be to systematically search for and characterise black hole mergers. This effort will determine the rate at which black hole merging occurs at early cosmic epochs and will assess the role of merging in the early growth of black holes and the rate at which gravitational waves are produced from the dawn of time.

These results have been published in the Monthly Notices of the Royal Astronomical Society.

Reference:
Hannah Übler et al. ‘GA-NIFS: JWST discovers an offset AGN 740 million years after the big bang’ Monthly Notices of the Royal Astronomical Society (2024). DOI: 10.1093/mnras/stae943

Adapted from a press release by the European Space Agency.

An international team of astronomers, led by the University of Cambridge, has used the James Webb Space Telescope to find evidence for an ongoing merger of two galaxies and their massive black holes when the Universe was only 740 million years old. This marks the most distant detection of a black hole merger ever obtained and the first time that this phenomenon has been detected so early in the Universe.

Massive black holes have been shaping the evolution of galaxies from the very beginningHannah ÜblerESA/Webb, NASA, CSA, J. Dunlop, H. Übler, R. Maiolino, et. alThe environment of the galaxy system ZS7 from the JWST PRIMER programme as seen by Webb's NIRCam instrument


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution

Nine Cambridge scientists elected as Fellows of the Royal Society 2024

Thu, 16/05/2024 - 09:51

The Royal Society is a self-governing Fellowship of many of the world’s most distinguished scientists drawn from all areas of science, engineering and medicine.

The Society’s fundamental purpose, as it has been since its foundation in 1660, is to recognise, promote and support excellence in science and to encourage the development and use of science for the benefit of humanity.

This year, over 90 researchers, innovators and communicators from around the world have been elected as Fellows of the Royal Society for their substantial contribution to the advancement of science. Nine of these are from the University of Cambridge.

Sir Adrian Smith, President of the Royal Society said: “I am pleased to welcome such an outstanding group into the Fellowship of the Royal Society.

“This new cohort have already made significant contributions to our understanding of the world around us and continue to push the boundaries of possibility in academic research and industry.

“From visualising the sharp rise in global temperatures since the industrial revolution to leading the response to the Covid-19 pandemic, their diverse range of expertise is furthering human understanding and helping to address some of our greatest challenges. It is an honour to have them join the Fellowship.”

The Fellows and Foreign Members join the ranks of Stephen Hawking, Isaac Newton, Charles Darwin, Albert Einstein, Lise Meitner, Subrahmanyan Chandrasekhar and Dorothy Hodgkin.

The new Cambridge fellows are: 
 

Professor Sir John Aston Kt FRS

Aston is the Harding Professor of Statistics in Public Life at the Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics, where he develops techniques for public policy and improves the use of quantitative methods in public policy debates.

From 2017 to 2020 he was the Chief Scientific Adviser to the Home Office, providing statistical and scientific advice to ministers and officials, and was involved in the UK’s response to the Covid pandemic. He was knighted in 2021 for services to statistics and public policymaking, and is a Fellow of Churchill College.
 

Professor Sarah-Jayne Blakemore FBA FMedSci FRS

Blakemore is the Professor of Psychology and Cognitive Neuroscience, Department of Psychology, and leader of the Developmental Cognitive Neuroscience Group. Her research focuses on the development of social cognition and decision making in the human adolescent brain, and adolescent mental health. 

Blakemore has been awarded several national and international prizes for her research, and is a Fellow of the British Academy, the American Association of Psychological Science and the Academy of Medical Sciences. 
 

Professor Patrick Chinnery FMedSci FRS

Chinnery is Professor of Neurology and head of the University’s Department of Clinical Neurosciences, and a Fellow of Gonville & Caius College. He was appointed Executive Chair of the Medical Research Council last year, having previously been MRC Clinical Director since 2019.

His principal research is the role of mitochondria in human disease and developing new treatments for mitochondrial disorders. Chinnery is a Wellcome Principal Research Fellow with a lab based in the MRC Mitochondrial Biology Unit and jointly chairs the NIHR BioResource for Translational Research in Common and Rare Diseases. He is a Fellow of the Academy of Medical Sciences.


Professor Rebecca Fitzgerald FMedSci FRS

Fitzgerald is Professor of Cancer Prevention in the Department of Oncology and the inaugural Director of the University’s new Early Cancer Institute, which launched in 2022. She is a Fellow of Trinity College.

Her pioneering work to devise a first-in-class, non-endoscopic capsule sponge test for identifying individuals at high risk for oesophageal cancer has won numerous prizes, including the Westminster Medal, and this test is now being rolled out in the NHS and beyond by her spin-out Cyted Ltd.


Professor David Hodell FRS

Hodell is the Woodwardian Professor of Geology and Director of the Godwin Laboratory for Palaeoclimate Research in the Department of Earth Sciences, and a Fellow of Clare College.

A marine geologist and paleoclimatologist, his research focuses on high-resolution paleoclimate records from marine and lake sediments, as well as mineral deposits, to better understand past climate dynamics. Hodell is a fellow of the American Geophysical Union and the American Association for the Advancement of Science. He has received the Milutin Milankovic Medal.


Professor Eric Lauga FRS

Lauga is Professor of Applied Mathematics in the Department of Applied Mathematics and Theoretical Physics, where his research is in fluid mechanics, biophysics and soft matter. Lauga is the author, or co-author, of over 180 publications and currently serves as Associate Editor for the journal Physical Review Fluids.

He is a recipient of three awards from the American Physical Society: the Andreas Acrivos Dissertation Award in Fluid Dynamics, the François Frenkiel Award for Fluid Mechanics and the Early Career Award for Soft Matter Research. He is a Fellow of the American Physical Society and of Trinity College.


Professor George Malliaras FRS

Malliaras is the Prince Philip Professor of Technology in the Department of Engineering, where he leads a group that works on the development and translation of implantable and wearable devices that interface with electrically active tissues, with applications in neurological disorders and brain cancer.

Research conducted by Malliaras has received awards from the European Academy of Sciences, the New York Academy of Sciences, and the US National Science Foundation among others. He is a Fellow of the Materials Research Society and of the Royal Society of Chemistry.


Professor Oscar Randal-Williams FRS

Randal-Williams is the Sadleirian Professor of Pure Mathematics in the Department of Pure Mathematics and Mathematical Statistics.

He has received the Whitehead Prize from the London Mathematical Society, a Philip Leverhulme Prize, the Oberwolfach Prize, the Dannie Heineman Prize of the Göttingen Academy of Sciences and Humanities, and was jointly awarded the Clay Research Award.

Randal-Williams is one of two managing editors of the Proceedings of the London Mathematical Society, and an editor of the Journal of Topology.


Professor Mihaela van der Schaar FRS

Van der Schaar is the John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine in the Departments of Applied Mathematics and Theoretical Physics, Engineering and Medicine.

She is the founder and director of the Cambridge Centre for AI in Medicine, and a Fellow at The Alan Turing Institute. Her work has received numerous awards, including the Oon Prize on Preventative Medicine, a National Science Foundation CAREER Award, and the IEEE Darlington Award.

Van der Schaar is credited as inventor on 35 US patents, and has made over 45 contributions to international standards for which she received three ISO Awards. In 2019, a Nesta report declared her the most-cited female AI researcher in the UK.


 

Nine outstanding Cambridge researchers have been elected as Fellows of the Royal Society, the UK’s national academy of sciences and the oldest science academy in continuous existence.

Royal SocietyThe Royal Society in central London


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

2023 was the hottest summer in two thousand years

Tue, 14/05/2024 - 16:00

Although 2023 has been reported as the hottest year on record, the instrumental evidence only reaches back as far as 1850 at best, and most records are limited to certain regions.

Now, by using past climate information from annually resolved tree rings over two millennia, scientists from the University of Cambridge and the Johannes Gutenberg University Mainz have shown how exceptional the summer of 2023 was.

Even allowing for natural climate variations over hundreds of years, 2023 was still the hottest summer since the height of the Roman Empire, exceeding the extremes of natural climate variability by half a degree Celsius.

“When you look at the long sweep of history, you can see just how dramatic recent global warming is,” said co-author Professor Ulf Büntgen, from Cambridge’s Department of Geography. “2023 was an exceptionally hot year, and this trend will continue unless we reduce greenhouse gas emissions dramatically.”

The results, reported in the journal Nature, also demonstrate that in the Northern Hemisphere, the 2015 Paris Agreement to limit warming to 1.5C above pre-industrial levels has already been breached.

Early instrumental temperature records, from 1850-1900, are sparse and inconsistent. The researchers compared early instrumental data with a large-scale tree ring dataset and found the 19th century temperature baseline used to contextualise global warming is several tenths of a degree Celsius colder than previously thought. By re-calibrating this baseline, the researchers calculated that summer 2023 conditions in the Northern Hemisphere were 2.07C warmer than mean summer temperatures between 1850 and 1900.

“Many of the conversations we have around global warming are tied to a baseline temperature from the mid-19th century, but why is this the baseline? What is normal, in the context of a constantly-changing climate, when we’ve only got 150 years of meteorological measurements?” said Büntgen. “Only when we look at climate reconstructions can we better account for natural variability and put recent anthropogenic climate change into context.”

Tree rings can provide that context, since they contain annually-resolved and absolutely-dated information about past summer temperatures. Using tree-ring chronologies allows researchers to look much further back in time without the uncertainty associated with some early instrumental measurements.

The available tree-ring data reveals that most of the cooler periods over the past 2000 years, such as the Little Antique Ice Age in the 6th century and the Little Ice Age in the early 19th century, followed large-sulphur-rich volcanic eruptions. These eruptions spew huge amounts of aerosols into the stratosphere, triggering rapid surface cooling. The coldest summer of the past two thousand years, in 536 CE, followed one such eruption, and was 3.93C colder than the summer of 2023.

Most of the warmer periods covered by the tree ring data can be attributed to the El Niño climate pattern, or El Niño-Southern Oscillation (ENSO). El Niño affects weather worldwide due to weakened trade winds in the Pacific Ocean and often results in warmer summers in the Northern Hemisphere. While El Niño events were first noted by fisherman in the 17th century, they can be observed in the tree ring data much further back in time.

However, over the past 60 years, global warming caused by greenhouse gas emissions are causing El Niño events to become stronger, resulting in hotter summers. The current El Niño event is expected to continue into early summer 2024, making it likely that this summer will break temperature records once again.

“It’s true that the climate is always changing, but the warming in 2023, caused by greenhouse gases, is additionally amplified by El Niño conditions, so we end up with longer and more severe heat waves and extended periods of drought,” said Professor Jan Esper, the lead author of the study from the Johannes Gutenberg University Mainz in Germany. “When you look at the big picture, it shows just how urgent it is that we reduce greenhouse gas emissions immediately.”

The researchers note that while their results are robust for the Northern Hemisphere, it is difficult to obtain global averages for the same period since data is sparse for the Southern Hemisphere. The Southern Hemisphere also responds differently to climate change, since it is far more ocean-covered than the Northern Hemisphere.

The research was supported in part by the European Research Council.

Reference:
Jan Esper, Max Torbenson, Ulf Büntgen. ‘2023 summer warmth unparalleled over the past 2,000 years.’ Nature (2024). DOI: 10.1038/s41586-024-07512-y

Researchers have found that 2023 was the hottest summer in the Northern Hemisphere in the past two thousand years, almost four degrees warmer than the coldest summer during the same period.

When you look at the long sweep of history, you can see just how dramatic recent global warming isUlf Büntgentrekandshoot via Getty ImagesMorning sun over Los Angeles


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Over 20,000 people join search for new dementia treatments

Tue, 14/05/2024 - 10:00

Using the resource, scientists have already been able to show for the first time that two important bodily mechanisms – inflammation and metabolism – play a role in the decline in brain function as we age.

By 2050, approximately 139 million people are expected to be living with dementia worldwide. In the UK, in 2022, UK Prime Minister launched the Dame Barbara Windsor Dementia Mission, part of the government’s commitment to double increase research funding for dementia.

Although there has been recent progress developing drugs that slow down progression of the disease, the two leading treatments only have a small effect, and the vast majority of new approaches that work in animal studies fail when it comes to patient clinical trials.

One explanation for these failures is that the drugs are tested in people who already have memory loss – and by this point, it may be too late to stop or reverse the disease. Hence, there is an urgent need to understand what is going on before people develop symptoms at the very early stages of disease, and to test new treatments before people come to their doctor with cognitive problems. This approach requires a large cohort of participants willing to be recalled for clinical and experimental studies of cognitive decline.

Today, writing in the journal Nature Medicine, scientists led by the University of Cambridge in partnership with the Alzheimer’s Society report how they have recruited 21,000 people aged 17-85 to the Genes and Cognition Cohort within the National Institute for Health and Care Research (NIHR) BioResource.

The NIHR BioResource was established in 2007 to recruit volunteers keen to engage in experimental medicine and clinical trials across the whole of medicine. Approximately half of its participants are recruited to disease specific cohorts, but the other half are from the general public, and detailed information about their genetics and their physical makeup has been collected. They have all given their consent to be contacted about future research studies.

For the Genes and Cognition Cohort, researchers used a combination of cognitive tests and genetic data, combined with other health data and demographic information, to enable the first at-scale study of cognitive changes. This will allow the team to recruit participants for studies of cognitive decline and new treatments for this.

For example, a pharmaceutical company with a promising new drug candidate to slow the cognitive decline could recruit people through the BioResource based on their profile and invite them to join in the clinical trial. Having a baseline measurement for their cognitive performance will allow scientists to observe whether the drug slows their expected cognitive decline.

Professor Patrick Chinnery from the Department of Clinical Neurosciences at the University of Cambridge and co-Chair of the NIHR BioResource, who has led the project, said: “We’ve created a resource that is unmatched anywhere else in the world, recruiting people who are not showing any signs of dementia rather than people already having symptoms. It will allow us to match individuals to particular studies and speed up the development of much-needed new drugs to treat dementia.

“We know that over time our cognitive function decreases, so we’ve plotted out the expected trajectory of various different cognitive functions over our volunteers’ life course according to their genetic risk. We’ve also asked the question, ‘What are the genetic mechanisms that predispose you to slow or fast cognitive decline as you age?’.”

Using the research, the team have identified two mechanisms that appear to affect cognition as we age and could serve as potential targets to slow down cognitive decline and thereby delay the onset of dementia. The first of these is inflammation, with immune cells specific to the brain and central nervous system – known as microglia – causing gradual deterioration of the brain and hence its ability to perform key cognitive functions. The second mechanism relates to metabolism – in particular, how carbohydrates are broken down in the brain to release energy.

Professor Chinnery added: “Cognitive decline is a natural process, but when it drops below a particular threshold, that’s when there’s a problem – that is when we would diagnose dementia. Anything that slows that decline will delay when we drop below that threshold. If you could put off the onset of dementia from 65 to 75 or even 85, it would make a huge difference at an individual and at a population level.”

Dr Richard Oakley, Associate Director of Research and Innovation at Alzheimer’s Society, said: “This exciting study, funded by Alzheimer’s Society, is an important step in helping us to better understand how the diseases that cause dementia begin, and will aid in the development of new treatments that target the early stages of these diseases.

“The data, from over 20,000 volunteers, helps us to better understand the connection between participants’ genes and cognitive decline and allows for further ground-breaking analysis in future. 

“One in three people born in the UK today will go on to develop dementia in their lifetime but research will beat dementia. We need to make it a reality sooner through more funding, partnership working and people taking part in dementia research.”

For further information about how you can join the BioResource and contribute to studies like this one and many others, please visit www.bioresource.nihr.ac.uk.

The research was carried out in collaboration with the Medical Research Council Biostatistics Unit and was supported by the Alzheimer’s Society and the NIHR BioResource. The researchers were also supported by Wellcome and the Medical Research Council.

Reference
Rahman, MS et al. Dynamics of cognitive variability with age and its genetic underpinning in NIHR BioResource Genes and Cognition Cohort participants. Nat Med; 14 May 2024; DOI: 10.1038/s41591-024-02960-5

More than 20,000 volunteers have been recruited to a resource aimed at speeding up the development of much-needed dementia drugs. The cohort will enable scientists in universities and industry to involve healthy individuals who may be at increased risk of dementia in clinical trials to test whether new drugs can slow the decline in various brain functions including memory and delay the onset of dementia.

We’ve created a resource that is unmatched anywhere else in the world, recruiting people who are not showing any signs of dementia rather than people already having symptomsPatrick ChinneryHalfpoint Images (Getty Images)Smiling elderly woman speaking to a healthcare worker


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Birth by C-section more than doubles odds of measles vaccine failure

Mon, 13/05/2024 - 10:01

A study by the University of Cambridge, UK, and Fudan University, China, has found that a single dose of the measles jab is up to 2.6 times more likely to be completely ineffective in children born by C-section, compared to those born naturally.

Failure of the vaccine means that the child’s immune system does not produce antibodies to fight against measles infection, so they remain susceptible to the disease.

A second measles jab was found to induce a robust immunity against measles in C-section children.

Measles is a highly infectious disease, and even low vaccine failure rates can significantly increase the risk of an outbreak.

A potential reason for this effect is linked to the development of the infant’s gut microbiome – the vast collection of microbes that naturally live inside the gut. Other studies have shown that vaginal birth transfers a greater variety of microbes from mother to baby, which can boost the immune system.

“We’ve discovered that the way we’re born - either by C-section or natural birth - has long-term consequences on our immunity to diseases as we grow up,” said Professor Henrik Salje in the University of Cambridge​’s Department of Genetics, joint senior author of the report.

He added: “We know that a lot of children don't end up having their second measles jab, which is dangerous for them as individuals and for the wider population.

“Infants born by C-section are the ones we really want to be following up to make sure they get their second measles jab, because their first jab is much more likely to fail.”

The results are published today in the journal Nature Microbiology.

At least 95% of the population needs to be fully vaccinated to keep measles under control but the UK is well below this, despite the Measles, Mumps and Rubella (MMR) vaccine being available through the NHS Routine Childhood Immunisation Programme.

An increasing number of women around the world are choosing to give birth by caesarean section: in the UK a third of all births are by C-section, in Brazil and Turkey over half of all children are born this way.

“With a C-section birth, children aren’t exposed to the mother’s microbiome in the same way as with a vaginal birth. We think this means they take longer to catch up in developing their gut microbiome, and with it, the ability of the immune system to be primed by vaccines against diseases including measles,” said Salje.

To get their results, the researchers used data from previous studies of over 1,500 children in Hunan, China, which included blood samples taken every few weeks from birth to the age of 12. This allowed them to see how levels of measles antibodies in the blood change over the first few years of life, including following vaccination.

They found that 12% of children born via caesarean section had no immune response to their first measles vaccination, as compared to 5% of children born by vaginal delivery. This means that many of the children born by C-section did still mount an immune response following their first vaccination.

Two doses of the measles jab are needed for the body to mount a long-lasting immune response and protect against measles. According to the World Health Organisation, in 2022 only 83% of the world's children had received one dose of measles vaccine by their first birthday – the lowest since 2008.

Salje said: “Vaccine hesitancy is really problematic, and measles is top of the list of diseases we’re worried about because it’s so infectious.”

Measles is one of the world’s most contagious diseases, spread by coughs and sneezes. It starts with cold-like symptoms and a rash, and can lead to serious complications including blindness, seizures, and death.

Before the measles vaccine was introduced in 1963, there were major measles epidemics every few years causing an estimated 2.6 million deaths each year.

The research was funded by the National Natural Science Foundation of China.

Reference

Wang, W. et al: ‘Dynamics of measles immunity from birth and following vaccination.’ Nature Microbiology, 13 May 2024. DOI: 10.1038/s41564-024-01694-x

Researchers say it is vital that children born by caesarean section receive two doses of the measles vaccine for robust protection against the disease.

CHBD / E+ / Getty Images Very sick 5 year old little boy fighting measles infection, boy is laying in bed under the blanket with a agonizing expression, boy is covered with rash caused by virus.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Baby born deaf can hear after breakthrough gene therapy

Thu, 09/05/2024 - 08:32

Opal Sandy from Oxfordshire is the first patient treated in a global gene therapy trial, which shows “mind-blowing” results. She is the first British patient in the world and the youngest child to receive this type of treatment.

Opal was born completely deaf because of a rare genetic condition, auditory neuropathy, caused by the disruption of nerve impulses travelling from the inner ear to the brain.

Within four weeks of having the gene therapy infusion to her right ear, Opal responded to sound, even with the cochlear implant in her left ear switched off.

Clinicians noticed continuous improvement in Opal’s hearing in the weeks afterwards. At 24 weeks, they confirmed Opal had close to normal hearing levels for soft sounds, such as whispering, in her treated ear.

Now 18 months old, Opal can respond to her parents’ voices and can communicate words such as “Dada” and “bye-bye.”

Opal’s mother, Jo Sandy, said: “When Opal could first hear us clapping unaided it was mind-blowing - we were so happy when the clinical team confirmed at 24 weeks that her hearing was also picking up softer sounds and speech. The phrase ‘near normal’ hearing was used and everyone was so excited such amazing results had been achieved.”

Auditory neuropathy can be due to a variation in a single gene, known as the OTOF gene. The gene produces a protein called otoferlin, needed to allow the inner hair cells in the ear to communicate with the hearing nerve. Approximately 20,000 people across the UK, Germany, France, Spain, Italy and UK and are deaf due to a mutation in the OTOF gene.

The CHORD trial, which started in May 2023, aims to show whether gene therapy can provide hearing for children born with auditory neuropathy.

Professor Manohar Bance from the Department of Clinical Neurosciences at the University of Cambridge and an ear surgeon at Cambridge University Hospitals NHS Foundation Trust is chief investigator of the trial. He said:

“These results are spectacular and better than I expected. Gene therapy has been the future of otology and audiology for many years and I’m so excited that it is now finally here. This is hopefully the start of a new era for gene therapies for the inner ear and many types of hearing loss.”

Children with a variation in the OTOF gene often pass the newborn screening, as the hair cells are working, but they are not talking to the nerve. It means this hearing loss is not commonly detected until children are 2 or 3 years of age – when a delay in speech is likely to be noticed.

Professor Bance added: “We have a short time frame to intervene because of the rapid pace of brain development at this age. Delays in the diagnosis can also cause confusion for families as the many reasons for delayed speech and late intervention can impact a children’s development.”

“More than sixty years after the cochlear implant was first invented – the standard of care treatment for patients with OTOF related hearing loss – this trial shows gene therapy could provide a future alternative. It marks a new era in the treatment for deafness. It also supports the development of other gene therapies that may prove to make a difference in other genetic related hearing conditions, many of which are more common than auditory neuropathy.”

Mutations in the OTOF gene can be identified by standard NHS genetic testing. Opal was identified as being at risk as her older sister has the condition; this was confirmed by genetic test result when she was 3 weeks old.

Opal was given an infusion containing a harmless virus (AAV1). It delivers a working copy of the OTOF gene and is delivered via an injection in the cochlea during surgery under general anaesthesia. During surgery, while Opal was given the gene therapy in right ear, a cochlear implant was fitted in her left ear.

James Sandy, Opal’s father said: “It was our ultimate goal for Opal to hear all the speech sounds. It’s already making a difference to our day-to-day lives, like at bath-time or swimming, when Opal can’t wear her cochlear implant. We feel so proud to have contributed to such pivotal findings, which will hopefully help other children like Opal and their families in the future.”

Opal’s 24-week results, alongside other scientific data from the CHORD trial are being presented at the American Society of Gene and Cell Therapy (ASGC) in Baltimore, USA this week.

Dr Richard Brown, Consultant Paediatrician at CUH, who is an Investigator on the CHORD trial, said: “The development of genomic medicine and alternative treatments is vital for patients worldwide, and increasingly offers hope to children with previously incurable disorders. It is likely that in the long run such treatments require less follow up so may prove to be an attractive option, including within the developing world. Follow up appointments have shown effective results so far with no adverse reactions and it is exciting to see the results to date.  

“Within the new planned Cambridge Children’s Hospital, we look forward to having a genomic centre of excellence which will support patients from across the region to access the testing they need, and the best treatment, at the right time.”

The CHORD trial has been funded by Regeneron. Patients are being enrolled in the study in the US, UK and Spain.

Patients in the first phase of the study receive a low dose to one ear. The second phase are expected to use a higher dose of gene therapy in one ear only, following proven safety of the starting dose. The third phase will look at gene therapy in both ears with the dose selected after ensuring the safety and effectiveness in parts 1 and 2. Follow up appointments will continue for five years for enrolled patients, which will show how patients adapt to understand speech in the longer term.

In Cambridge, the trial is supported by NIHR Cambridge Clinical Research Facility and NIHR Cambridge Biomedical Research Centre.

Adapted from a press release from CUH

A baby girl born deaf can hear unaided for the first time, after receiving gene therapy when she was eleven months old at Addenbrooke’s Hospital in Cambridge.

Gene therapy has been the future of otology and audiology for many years and I’m so excited that it is now finally hereManohar BanceCambridge University Hospitals NHS Foundation TrustBaby Opal and mother Jo


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Call for safeguards to prevent unwanted ‘hauntings’ by AI chatbots of dead loved ones

Thu, 09/05/2024 - 08:06

Artificial intelligence that allows users to hold text and voice conversations with lost loved ones runs the risk of causing psychological harm and even digitally “haunting” those left behind without design safety standards, according to University of Cambridge researchers. 

‘Deadbots’ or ‘Griefbots’ are AI chatbots that simulate the language patterns and personality traits of the dead using the digital footprints they leave behind. Some companies are already offering these services, providing an entirely new type of “postmortem presence”.

AI ethicists from Cambridge’s Leverhulme Centre for the Future of Intelligence outline three design scenarios for platforms that could emerge as part of the developing  “digital afterlife industry”, to show the potential consequences of careless design in an area of AI they describe as “high risk”.

The research, published in the journal Philosophy and Technology, highlights the potential for companies to use deadbots to surreptitiously advertise products to users in the manner of a departed loved one, or distress children by insisting a dead parent is still “with you”.

When the living sign up to be virtually re-created after they die, resulting chatbots could be used by companies to spam surviving family and friends with unsolicited notifications, reminders and updates about the services they provide – akin to being digitally “stalked by the dead”.

Even those who take initial comfort from a ‘deadbot’ may get drained by daily interactions that become an “overwhelming emotional weight”, argue researchers, yet may also be powerless to have an AI simulation suspended if their now-deceased loved one signed a lengthy contract with a digital afterlife service. 

“Rapid advancements in generative AI mean that nearly anyone with Internet access and some basic know-how can revive a deceased loved one,” said Dr Katarzyna Nowaczyk-Basińska, study co-author and researcher at Cambridge’s Leverhulme Centre for the Future of Intelligence (LCFI).

“This area of AI is an ethical minefield. It’s important to prioritise the dignity of the deceased, and ensure that this isn’t encroached on by financial motives of digital afterlife services, for example.

“At the same time, a person may leave an AI simulation as a farewell gift for loved ones who are not prepared to process their grief in this manner. The rights of both data donors and those who interact with AI afterlife services should be equally safeguarded.”

Platforms offering to recreate the dead with AI for a small fee already exist, such as ‘Project December’, which started out harnessing GPT models before developing its own systems, and apps including ‘HereAfter’. Similar services have also begun to emerge in China.

One of the potential scenarios in the new paper is “MaNana”: a conversational AI service allowing people to create a deadbot simulating their deceased grandmother without consent of the “data donor” (the dead grandparent). 

The hypothetical scenario sees an adult grandchild who is initially impressed and comforted by the technology start to receive advertisements once a “premium trial” finishes. For example, the chatbot suggesting ordering from food delivery services in the voice and style of the deceased.

The relative feels they have disrespected the memory of their grandmother, and wishes to have the deadbot turned off, but in a meaningful way – something the service providers haven’t considered.

“People might develop strong emotional bonds with such simulations, which will make them particularly vulnerable to manipulation,” said co-author Dr Tomasz Hollanek, also from Cambridge’s LCFI.

“Methods and even rituals for retiring deadbots in a dignified way should be considered. This may mean a form of digital funeral, for example, or other types of ceremony depending on the social context.”

“We recommend design protocols that prevent deadbots being utilised in disrespectful ways, such as for advertising or having an active presence on social media.”

While Hollanek and Nowaczyk-Basińska say that designers of re-creation services should actively seek consent from data donors before they pass, they argue that a ban on deadbots based on non-consenting donors would be unfeasible.

They suggest that design processes should involve a series of prompts for those looking to “resurrect” their loved ones, such as ‘have you ever spoken with X about how they would like to be remembered?’, so the dignity of the departed is foregrounded in deadbot development.    

Another scenario featured in the paper, an imagined company called “Paren’t”, highlights the example of a terminally ill woman leaving a deadbot to assist her eight-year-old son with the grieving process.

While the deadbot initially helps as a therapeutic aid, the AI starts to generate confusing responses as it adapts to the needs of the child, such as depicting an impending in-person encounter.

The researchers recommend age restrictions for deadbots, and also call for “meaningful transparency” to ensure users are consistently aware that they are interacting with an AI. These could be similar to current warnings on content that may cause seizures, for example.

The final scenario explored by the study – a fictional company called “Stay” – shows an older person secretly committing to a deadbot of themselves and paying for a twenty-year subscription, in the hopes it will comfort their adult children and allow their grandchildren to know them.

After death, the service kicks in. One adult child does not engage, and receives a barrage of emails in the voice of their dead parent. Another does, but ends up emotionally exhausted and wracked with guilt over the fate of the deadbot. Yet suspending the deadbot would violate the terms of the contract their parent signed with the service company.

“It is vital that digital afterlife services consider the rights and consent not just of those they recreate, but those who will have to interact with the simulations,” said Hollanek.

“These services run the risk of causing huge distress to people if they are subjected to unwanted digital hauntings from alarmingly accurate AI recreations of those they have lost. The potential psychological effect, particularly at an already difficult time, could be devastating.”

The researchers call for design teams to prioritise opt-out protocols that allow potential users terminate their relationships with deadbots in ways that provide emotional closure.

Added Nowaczyk-Basińska: “We need to start thinking now about how we mitigate the social and psychological risks of digital immortality, because the technology is already here.”    

Cambridge researchers lay out the need for design safety protocols that prevent the emerging “digital afterlife industry” causing social and psychological harm. 

Tomasz HollanekA visualisation of one of the design scenarios highlighted in the latest paper


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

‘Wraparound’ implants represent new approach to treating spinal cord injuries

Wed, 08/05/2024 - 19:01

A team of engineers, neuroscientists and surgeons from the University of Cambridge developed the devices and used them to record the nerve signals going back and forth between the brain and the spinal cord. Unlike current approaches, the Cambridge devices can record 360-degree information, giving a complete picture of spinal cord activity.

Tests in live animal and human cadaver models showed the devices could also stimulate limb movement and bypass complete spinal cord injuries where communication between the brain and spinal cord had been completely interrupted.

Most current approaches to treating spinal injuries involve both piercing the spinal cord with electrodes and placing implants in the brain, which are both high-risk surgeries. The Cambridge-developed devices could lead to treatments for spinal injuries without the need for brain surgery, which would be far safer for patients.

While such treatments are still at least several years away, the researchers say the devices could be useful in the near-term for monitoring spinal cord activity during surgery. Better understanding of the spinal cord, which is difficult to study, could lead to improved treatments for a range of conditions, including chronic pain, inflammation and hypertension. The results are reported in the journal Science Advances.

“The spinal cord is like a highway, carrying information in the form of nerve impulses to and from the brain,” said Professor George Malliaras from the Department of Engineering, who co-led the research. “Damage to the spinal cord causes that traffic to be interrupted, resulting in profound disability, including irreversible loss of sensory and motor functions.”

The ability to monitor signals going to and from the spinal cord could dramatically aid in the development of treatments for spinal injuries, and could also be useful in the nearer term for better monitoring of the spinal cord during surgery.

“Most technologies for monitoring or stimulating the spinal cord only interact with motor neurons along the back, or dorsal, part of the spinal cord,” said Dr Damiano Barone from the Department of Clinical Neurosciences, who co-led the research. “These approaches can only reach between 20 and 30 percent of the spine, so you’re getting an incomplete picture.”

By taking their inspiration from microelectronics, the researchers developed a way to gain information from the whole spine, by wrapping very thin, high-resolution implants around the spinal cord’s circumference. This is the first time that safe 360-degree recording of the spinal cord has been possible – earlier approaches for 360-degree monitoring use electrodes that pierce the spine, which can cause spinal injury.

The Cambridge-developed biocompatible devices – just a few millionths of a metre thick – are made using advanced photolithography and thin film deposition techniques, and require minimal power to function.

The devices intercept the signals travelling on the axons, or nerve fibres, of the spinal cord, allowing the signals to be recorded. The thinness of the devices means they can record the signals without causing any damage to the nerves, since they do not penetrate the spinal cord itself.

“It was a difficult process, because we haven’t made spinal implants in this way before, and it wasn’t clear that we could safely and successfully place them around the spine,” said Malliaras. “But because of recent advances in both engineering and neurosurgery, the planets have aligned and we’ve made major progress in this important area.”

The devices were implanted using an adaptation to routine surgical procedure so they could be slid under the spinal cord without damaging it. In tests using rat models, the researchers successfully used the devices to stimulate limb movement. The devices showed very low latency – that is, their reaction time was close to human reflexive movement. Further tests in human cadaver models showed that the devices can be successfully placed in humans.

The researchers say their approach could change how spinal injuries are treated in future. Current attempts to treat spinal injuries involve both brain and spinal implants, but the Cambridge researchers say the brain implants may not be necessary.

“If someone has a spinal injury, their brain is fine, but it’s the connection that’s been interrupted,” said Barone. “As a surgeon, you want to go where the problem is, so adding brain surgery on top of spinal surgery just increases the risk to the patient. We can collect all the information we need from the spinal cord in a far less invasive way, so this would be a much safer approach for treating spinal injuries.”

While a treatment for spinal injuries is still years away, in the nearer term, the devices could be useful for researchers and surgeons to learn more about this vital, but understudied, part of human anatomy in a non-invasive way. The Cambridge researchers are currently planning to use the devices to monitor nerve activity in the spinal cord during surgery.

“It’s been almost impossible to study the whole of the spinal cord directly in a human, because it’s so delicate and complex,” said Barone. “Monitoring during surgery will help us to understand the spinal cord better without damaging it, which in turn will help us develop better therapies for conditions like chronic pain, hypertension or inflammation. This approach shows enormous potential for helping patients.”

The research was supported in part by the Royal College of Surgeons, the Academy of Medical Sciences, Health Education England, the National Institute for Health Research, and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI).

 

Reference:
Ben J Woodington, Jiang Lei et al. ‘Flexible Circumferential Bioelectronics to Enable 360-degree Recording and Stimulation of the Spinal Cord.’ Science Advances (2024). DOI: 10.1126/sciadv.adl1230

A tiny, flexible electronic device that wraps around the spinal cord could represent a new approach to the treatment of spinal injuries, which can cause profound disability and paralysis.

Because of recent advances in both engineering and neurosurgery, the planets have aligned and we’ve made major progress in this important areaGeorge MalliarasSEBASTIAN KAULITZKI/SCIENCE PHOTO LIBRARYIllustration of spinal cord


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

New vaccine effective against coronaviruses that haven’t even emerged yet

Mon, 06/05/2024 - 10:00

This is a new approach to vaccine development called ‘proactive vaccinology’, where scientists build a vaccine before the disease-causing pathogen even emerges.

The new vaccine works by training the body’s immune system to recognise specific regions of eight different coronaviruses, including SARS-CoV-1, SARS-CoV-2, and several that are currently circulating in bats and have potential to jump to humans and cause a pandemic.

Key to its effectiveness is that the specific virus regions the vaccine targets also appear in many related coronaviruses. By training the immune system to attack these regions, it gives protection against other coronaviruses not represented in the vaccine – including ones that haven’t even been identified yet.

For example, the new vaccine does not include the SARS-CoV-1 coronavirus, which caused the 2003 SARS outbreak, yet it still induces an immune response to that virus.

“Our focus is to create a vaccine that will protect us against the next coronavirus pandemic, and have it ready before the pandemic has even started,” said Rory Hills, a graduate researcher in the University of Cambridge’s Department of Pharmacology and first author of the report.

He added: “We’ve created a vaccine that provides protection against a broad range of different coronaviruses – including ones we don’t even know about yet.”

The results are published today in the journal Nature Nanotechnology.

“We don’t have to wait for new coronaviruses to emerge. We know enough about coronaviruses, and different immune responses to them, that we can get going with building protective vaccines against unknown coronaviruses now,” said Professor Mark Howarth in the University of Cambridge’s Department of Pharmacology, senior author of the report.

He added: “Scientists did a great job in quickly producing an extremely effective COVID vaccine during the last pandemic, but the world still had a massive crisis with a huge number of deaths. We need to work out how we can do even better than that in the future, and a powerful component of that is starting to build the vaccines in advance.”

 

 

The new ‘Quartet Nanocage’ vaccine is based on a structure called a nanoparticle – a ball of proteins held together by incredibly strong interactions. Chains of different viral antigens are attached to this nanoparticle using a novel ‘protein superglue’. Multiple antigens are included in these chains, which trains the immune system to target specific regions shared across a broad range of coronaviruses.

This study demonstrated that the new vaccine raises a broad immune response, even in mice that were pre-immunised with SARS-CoV-2.

The new vaccine is much simpler in design than other broadly protective vaccines currently in development, which the researchers say should accelerate its route into clinical trials.

The underlying technology they have developed also has potential for use in vaccine development to protect against many other health challenges.

The work involved a collaboration between scientists at the University of Cambridge, the University of Oxford, and Caltech. It improves on previous work, by the Oxford and Caltech groups, to develop a novel all-in-one vaccine against coronavirus threats. The vaccine developed by Oxford and Caltech should enter Phase 1 clinical trials in early 2025, but its complex nature makes it challenging to manufacture which could limit large-scale production.

Conventional vaccines include a single antigen to train the immune system to target a single specific virus. This may not protect against a diverse range of existing coronaviruses, or against pathogens that are newly emerging.

The research was funded by the Biotechnology and Biological Sciences Research Council.

Reference: Hills, R.A. et al: ‘Proactive vaccination using multiviral Quartet Nanocages to elicit broad anti-coronavirus responses.’ Nature Nanotechnology, May 2024. DOI: 10.1038/s41565-024-01655-9

Researchers have developed a new vaccine technology that has been shown in mice to provide protection against a broad range of coronaviruses with potential for future disease outbreaks - including ones we don’t even know about

Our focus is to create a vaccine that will protect us against the next coronavirus pandemic, and have it ready before the pandemic has even started.Rory HillsStefan Cristian Cioata on GettySyringe and vaccine bottle


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Attribution-Noncommerical

Ice shelves fracture under weight of meltwater lakes

Fri, 03/05/2024 - 15:31

When air temperatures in Antarctica rise and glacier ice melts, water can pool on the surface of floating ice shelves, weighing them down and causing the ice to bend. Now, for the first time in the field, researchers have shown that ice shelves don’t just buckle under the weight of meltwater lakes — they fracture.

As the climate warms and melt rates in Antarctica increase, this fracturing could cause vulnerable ice shelves to collapse, allowing inland glacier ice to spill into the ocean and contribute to sea level rise.

Ice shelves are important for the Antarctic Ice Sheet’s overall health as they act to buttress or hold back the glacier ice on land. Scientists have predicted and modelled that surface meltwater loading could cause ice shelves to fracture, but no one had observed the process in the field, until now.

The new study, published in the Journal of Glaciology, may help explain how the Larsen B Ice Shelf abruptly collapsed in 2002. In the months before its catastrophic breakup, thousands of meltwater lakes littered the ice shelf’s surface, which then drained over just a few weeks.

To investigate the impacts of surface meltwater on ice shelf stability, a research team led by the University of Colorado Boulder, and including researchers from the University of Cambridge, travelled to the George VI Ice Shelf on the Antarctic Peninsula in November 2019.

First, the team identified a depression or ‘doline’ in the ice surface that had formed by a previous lake drainage event where they thought meltwater was likely to pool again on the ice. Then, they ventured out on snowmobiles, pulling all their science equipment and safety gear behind on sleds.

Around the doline, the team installed high-precision GPS stations to measure small changes in elevation at the ice’s surface, water-pressure sensors to measure lake depth, and a timelapse camera system to capture images of the ice surface and meltwater lakes every 30 minutes.

In 2020, the COVID-19 pandemic brought their fieldwork to a screeching halt. When the team finally made it back to their field site in November 2021, only two GPS sensors and one timelapse camera remained; two other GPS and all water pressure sensors had been flooded and buried in solid ice. Fortunately, the surviving instruments captured the vertical and horizontal movement of the ice’s surface and images of the meltwater lake that formed and drained during the record-high 2019/2020 melt season.

GPS data indicated that the ice in the centre of the lake basin flexed downward about a foot in response to the increased weight from meltwater. That finding builds upon previous work that produced the first direct field measurements of ice shelf buckling caused by meltwater ponding and drainage.

The team also found that the horizontal distance between the edge and centre of the meltwater lake basin increased by over a foot. This was most likely due to the formation and/or widening of circular fractures around the meltwater lake, which the timelapse imagery captured. Their results provide the first field-based evidence of ice shelf fracturing in response to a surface meltwater lake weighing down the ice.

“This is an exciting discovery,” said lead author Alison Banwell, from the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder. “We believe these types of circular fractures were key in the chain reaction style lake drainage process that helped to break up the Larsen B Ice Shelf.”

“While these measurements were made over a small area, they demonstrate that bending and breaking of floating ice due to surface water may be more widespread than previously thought,” said co-author Dr Rebecca Dell from Cambridge’s Scott Polar Research Institute. “As melting increases in response to predicted warming, ice shelves may become more prone to break up and collapse than they are currently.”

“This has implications for sea level as the buttressing of inland ice is reduced or removed, allowing the glaciers and ice streams to flow more rapidly into the ocean,” said co-author Professor Ian Willis, also from SPRI.

The work supports modelling results that show the immense weight of thousands of meltwater lakes and subsequent draining caused the Larsen B Ice Shelf to bend and break, contributing to its collapse.

“These observations are important because they can be used to improve models to better predict which Antarctic ice shelves are more vulnerable and most susceptible to collapse in the future,” Banwell said.

The research was funded by the U.S. National Science Foundation (NSF) and the Natural Environment Research Council (NERC), part of UK Research and Innovation (UKRI). The team also included researchers from the University of Oxford and the University of Chicago. Rebecca Dell is a Fellow of Trinity Hall, Cambridge. 

Reference:
Alison F Banwell et al. ‘Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica.’ Journal of Glaciology (2024). DOI: 10.1017/jog.2024.31

Adapted from a CIRES press release.

Heavy pooling meltwater can fracture ice, potentially leading to ice shelf collapse

Ian WillisAli Banwell and Laura Stevens installing the time-lapse camera used in this study on the George VI Ice Shelf in Antarctica.


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Robotic nerve ‘cuffs’ could help treat a range of neurological conditions

Fri, 26/04/2024 - 09:55

The researchers, from the University of Cambridge, combined flexible electronics and soft robotics techniques to develop the devices, which could be used for the diagnosis and treatment of a range of disorders, including epilepsy and chronic pain, or the control of prosthetic limbs.

Current tools for interfacing with the peripheral nerves – the 43 pairs of motor and sensory nerves that connect the brain and the spinal cord – are outdated, bulky and carry a high risk of nerve injury. However, the robotic nerve ‘cuffs’ developed by the Cambridge team are sensitive enough to grasp or wrap around delicate nerve fibres without causing any damage.

Tests of the nerve cuffs in rats showed that the devices only require tiny voltages to change shape in a controlled way, forming a self-closing loop around nerves without the need for surgical sutures or glues.

The researchers say the combination of soft electrical actuators with neurotechnology could be an answer to minimally invasive monitoring and treatment for a range of neurological conditions. The results are reported in the journal Nature Materials.

Electric nerve implants can be used to either stimulate or block signals in target nerves. For example, they might help relieve pain by blocking pain signals, or they could be used to restore movement in paralysed limbs by sending electrical signals to the nerves. Nerve monitoring is also standard surgical procedure when operating in areas of the body containing a high concentration of nerve fibres, such as anywhere near the spinal cord.

These implants allow direct access to nerve fibres, but they come with certain risks. “Nerve implants come with a high risk of nerve injury,” said Professor George Malliaras from Cambridge’s Department of Engineering, who led the research. “Nerves are small and highly delicate, so anytime you put something large, like an electrode, in contact with them, it represents a danger to the nerves.”

“Nerve cuffs that wrap around nerves are the least invasive implants currently available, but despite this they are still too bulky, stiff and difficult to implant, requiring significant handling and potential trauma to the nerve,” said co-author Dr Damiano Barone from Cambridge’s Department of Clinical Neurosciences.

The researchers designed a new type of nerve cuff made from conducting polymers, normally used in soft robotics. The ultra-thin cuffs are engineered in two separate layers. Applying tiny amounts of electricity – just a few hundred millivolts – causes the devices to swell or shrink.

The cuffs are small enough that they could be rolled up into a needle and injected near the target nerve. When activated electrically, the cuffs will change their shape to wrap around the nerve, allowing nerve activity to be monitored or altered.

“To ensure the safe use of these devices inside the body, we have managed to reduce the voltage required for actuation to very low values,” said Dr Chaoqun Dong, the paper’s first author. “What's even more significant is that these cuffs can change shape in both directions and be reprogrammed. This means surgeons can adjust how tightly the device fits around a nerve until they get the best results for recording and stimulating the nerve.”

Tests in rats showed that the cuffs could be successfully placed without surgery, and formed a self-closing loop around the target nerve. The researchers are planning further testing of the devices in animal models, and are hoping to begin testing in humans within the next few years.

“Using this approach, we can reach nerves that are difficult to reach through open surgery, such as the nerves that control, pain, vision or hearing, but without the need to implant anything inside the brain,” said Barone. “The ability to place these cuffs so they wrap around the nerves makes this a much easier procedure for surgeons, and it’s less risky for patients.”

“The ability to make an implant that can change shape through electrical activation opens up a range of future possibilities for highly targeted treatments,” said Malliaras. “In future, we might be able to have implants that can move through the body, or even into the brain – it makes you dream how we could use technology to benefit patients in future.”

The research was supported in part by the Swiss National Science Foundation, the Cambridge Trust, and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI).

 

Reference:
Chaoqun Dong et al. ‘Electrochemically actuated microelectrodes for minimally invasive peripheral nerve interfaces.’ Nature Materials (2024). DOI: 10.1038/s41563-024-01886-0

Researchers have developed tiny, flexible devices that can wrap around individual nerve fibres without damaging them.

The ability to make an implant that can change shape through electrical activation opens up a range of future possibilities for highly targeted treatmentsGeorge MalliarasXH4D via iStock / Getty Images PlusIllustration of the human nervous system


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Study highlights increased risk of second cancers among breast cancer survivors

Thu, 25/04/2024 - 00:30

For the first time, the research has shown that this risk is higher in people living in areas of greater socioeconomic deprivation.

Breast cancer is the most commonly diagnosed cancer in the UK. Around 56,000 people in the UK are diagnosed each year, the vast majority (over 99%) of whom are women. Improvements in earlier diagnosis and in treatments mean that five year survival rates have been increasing over time, reaching 87% by 2017 in England.

People who survive breast cancer are at risk of second primary cancer, but until now the exact risk has been unclear. Previously published research suggested that women and men who survive breast cancer are at a 24% and 27% greater risk of a non-breast second primary cancer than the wider population respectively. There have been also suggestions that second primary cancer risks differ by the age at breast cancer diagnosis.

To provide more accurate estimates, a team led by researchers at the University of Cambridge analysed data from over 580,000 female and over 3,500 male breast cancer survivors diagnosed between 1995 and 2019 using the National Cancer Registration Dataset. The results of their analysis are published today in Lancet Regional Health – Europe.

First author Isaac Allen from the Department of Public Health and Primary Care at the University of Cambridge said: “It’s important for us to understand to what extent having one type of cancer puts you at risk of a second cancer at a different site. The female and male breast cancer survivors whose data we studied were at increased risk of a number of second cancers. Knowing this can help inform conversations with their care teams to look out for signs of potential new cancers.”

The researchers found significantly increased risks of cancer in the contralateral (that is, unaffected) breast and for endometrium and prostate cancer in females and males, respectively. Females who survived breast cancer were at double the risk of contralateral breast cancer compared to the general population and at 87% greater risk of endometrial cancer, 58% greater risk of myeloid leukaemia and 25% greater risk of ovarian cancer.

Age of diagnosis was important, too – females diagnosed with breast cancer under the age of 50 were 86% more likely to develop a second primary cancer compared to the general population of the same age, whereas women diagnosed after age 50 were at a 17% increased risk. One potential explanation is that a larger number of younger breast cancer survivors may have inherited genetic alterations that increase risk for multiple cancers. For example, women with inherited changes to the BRCA1 and BRCA2 genes are at increased risk of contralateral breast cancer, ovarian and pancreatic cancer.

Females from the most socioeconomically deprived backgrounds were at 35% greater risk of a second primary cancer compared to females from the least deprived backgrounds. These differences were primarily driven by non-breast cancer risks, particularly for lung, kidney, head and neck, bladder, oesophageal and stomach cancers. This may be because smoking, obesity, and alcohol consumption – established risk factors for these cancers – are more common among more deprived groups.

Allen, a PhD student at Clare Hall, added: “This is further evidence of the health inequalities that people from more deprived backgrounds experience. We need to fully understand why they are at greater risk of second cancers so that we can intervene and reduce this risk.”

Male breast cancer survivors were 55 times more likely than the general male population to develop contralateral breast cancer – though the researchers stress that an individual’s risk was still very low. For example, for every 100 men diagnosed with breast cancer at age 50 or over, about three developed contralateral breast cancer during a 25 year period.  Male breast cancer survivors were also 58% more likely than the general male population to develop prostate cancer.

Professor Antonis Antoniou from the Department of Public Health and Primary Care at the University of Cambridge, the study’s senior author, said: “This is the largest study to date to look at the risk in breast cancer survivors of developing a second cancer. We were able to carry this out and calculate more accurate estimates because of the outstanding data sets available to researchers through the NHS.”

The research was funded by Cancer Research UK with support from the National Institute for Health and Care Research Cambridge Biomedical Research Centre.

Cancer Research UK’s senior cancer intelligence manager, Katrina Brown, said: “This study shows us that the risk of second primary cancers is higher in people who have had breast cancer, and this can differ depending on someone’s socioeconomic background. But more research is needed to understand what is driving this difference and how to tackle these health inequalities.”

People who are concerned about their cancer risk should contact their GP for advice. If you or someone close to you have been affected by cancer and you’ve got questions, you can call Cancer Research UK nurses on freephone 0808 800 4040, Monday to Friday.

Reference
Allen, I, et al. Risks of second primary cancers among 584,965 female and male breast cancer survivors in England: a 25-year retrospective cohort study. Lancet Regional Health – Europe; 24 April 2024: DOI: 10.1016/j.lanepe.2024.100903

Survivors of breast cancer are at significantly higher risk of developing second cancers, including endometrial and ovarian cancer for women and prostate cancer for men, according to new research studying data from almost 600,000 patients in England.

It’s important for us to understand to what extent having one type of cancer puts you at risk of a second cancer at a different site. Knowing this can help inform conversations with their care teams to look out for signs of potential new cancersIsaac AllenNational Cancer InstituteDoctor standing near woman patient doing breast cancer


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

YesLicence type: Public Domain

A simple ‘twist’ improves the engine of clean fuel generation

Wed, 24/04/2024 - 15:31

The researchers, led by the University of Cambridge, are developing low-cost light-harvesting semiconductors that power devices for converting water into clean hydrogen fuel, using just the power of the sun. These semiconducting materials, known as copper oxides, are cheap, abundant and non-toxic, but their performance does not come close to silicon, which dominates the semiconductor market.

However, the researchers found that by growing the copper oxide crystals in a specific orientation so that electric charges move through the crystals at a diagonal, the charges move much faster and further, greatly improving performance. Tests of a copper oxide light harvester, or photocathode, based on this fabrication technique showed a 70% improvement over existing state-of-the-art oxide photocathodes, while also showing greatly improved stability.

The researchers say their results, reported in the journal Nature, show how low-cost materials could be fine-tuned to power the transition away from fossil fuels and toward clean, sustainable fuels that can be stored and used with existing energy infrastructure.

Copper (I) oxide, or cuprous oxide, has been touted as a cheap potential replacement for silicon for years, since it is reasonably effective at capturing sunlight and converting it into electric charge. However, much of that charge tends to get lost, limiting the material’s performance.

“Like other oxide semiconductors, cuprous oxide has its intrinsic challenges,” said co-first author Dr Linfeng Pan from Cambridge’s Department of Chemical Engineering and Biotechnology. “One of those challenges is the mismatch between how deep light is absorbed and how far the charges travel within the material, so most of the oxide below the top layer of material is essentially dead space.”

“For most solar cell materials, it’s defects on the surface of the material that cause a reduction in performance, but with these oxide materials, it’s the other way round: the surface is largely fine, but something about the bulk leads to losses,” said Professor Sam Stranks, who led the research. “This means the way the crystals are grown is vital to their performance.”

To develop cuprous oxides to the point where they can be a credible contender to established photovoltaic materials, they need to be optimised so they can efficiently generate and move electric charges – made of an electron and a positively-charged electron ‘hole’ – when sunlight hits them.

One potential optimisation approach is single-crystal thin films – very thin slices of material with a highly-ordered crystal structure, which are often used in electronics. However, making these films is normally a complex and time-consuming process.

Using thin film deposition techniques, the researchers were able to grow high-quality cuprous oxide films at ambient pressure and room temperature. By precisely controlling growth and flow rates in the chamber, they were able to ‘shift’ the crystals into a particular orientation. Then, using high temporal resolution spectroscopic techniques, they were able to observe how the orientation of the crystals affected how efficiently electric charges moved through the material.

“These crystals are basically cubes, and we found that when the electrons move through the cube at a body diagonal, rather than along the face or edge of the cube, they move an order of magnitude further,” said Pan. “The further the electrons move, the better the performance.”

“Something about that diagonal direction in these materials is magic,” said Stranks. “We need to carry out further work to fully understand why and optimise it further, but it has so far resulted in a huge jump in performance.” Tests of a cuprous oxide photocathode made using this technique showed an increase in performance of more than 70% over existing state-of-the-art electrodeposited oxide photocathodes.

“In addition to the improved performance, we found that the orientation makes the films much more stable, but factors beyond the bulk properties may be at play,” said Pan.

The researchers say that much more research and development is still needed, but this and related families of materials could have a vital role in the energy transition.

“There’s still a long way to go, but we’re on an exciting trajectory,” said Stranks. “There’s a lot of interesting science to come from these materials, and it’s interesting for me to connect the physics of these materials with their growth, how they form, and ultimately how they perform.”

The research was a collaboration with École Polytechnique Fédérale de Lausanne, Nankai University and Uppsala University. The research was supported in part by the European Research Council, the Swiss National Science Foundation, and the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI). Sam Stranks is Professor of Optoelectronics in the Department of Chemical Engineering and Biotechnology, and a Fellow of Clare College, Cambridge.

 

Reference:
Linfeng Pan, Linjie Dai et al. ‘High carrier mobility along the [111] orientation in Cu2O photoelectrodes.’ Nature (2024). DOI: 10.1038/s41586-024-07273-8

For more information on energy-related research in Cambridge, please visit the Energy IRC, which brings together Cambridge’s research knowledge and expertise, in collaboration with global partners, to create solutions for a sustainable and resilient energy landscape for generations to come. 

Researchers have found a way to super-charge the ‘engine’ of sustainable fuel generation – by giving the materials a little twist.

orange via Getty ImagesAbstract orange swirls


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Rare disease research at Cambridge receives major boost with launch of two new centres

Tue, 23/04/2024 - 00:34

The virtual centres, supported by the charity LifeArc, will focus on areas where there are significant unmet needs. They will tackle barriers that ordinarily prevent new tests and treatments reaching patients with rare diseases and speed up the delivery of rare disease treatment trials.

The centres will bring together leading scientists and rare disease clinical specialists from across the UK for the first time, encouraging new collaborations across different research disciplines and providing improved access to facilities and training.

LifeArc Centre for Rare Mitochondrial Diseases

Professor Patrick Chinnery will lead the LifeArc Centre for Rare Mitochondrial Diseases, a national partnership with the Lily Foundation and Muscular Dystrophy UK, together with key partners at UCL, Newcastle University and three other centres (Oxford, Birmingham and Manchester).

Mitochondrial diseases are genetic disorders affecting 1 in 5,000 people. They often cause progressive damage to the brain, eyes, muscles, heart and liver, leading to severe disability and a shorter life. There is currently have no cure for most conditions, however, new opportunities to treat mitochondrial diseases have been identified in the last five years, meaning that it’s a critical time for research development. The £7.5M centre will establish a national platform that will connect patient groups, knowledge and infrastructure in order to accelerate new treatments getting to clinical trial.

Professor Chinnery said: “The new LifeArc centre unites scientific and clinical strengths from across the UK. For the first time we will form a single team, focussed on developing new treatments for mitochondrial diseases which currently have no cure.”

Adam Harraway has Mitochondrial Disease and says he lives in constant fear of what might go wrong next with his condition. “With rare diseases such as these, it can feel like the questions always outweigh the answers. The news of this investment from LifeArc fills me with hope for the future. To know that there are so many wonderful people and organisations working towards treatments and cures makes me feel seen and heard. It gives a voice to people who often have to suffer in silence, and I'm excited to see how this project can help Mito patients in the future."

LifeArc Centre for Rare Respiratory Diseases

Professor Stefan Marciniak will co-lead the LifeArc Centre for Rare Respiratory Diseases, a UK wide collaborative centre co-created in partnership with patients and charities. This Centre is a partnership between Universities and NHS Trusts across the UK, co-led by Edinburgh with Nottingham, Dundee, Cambridge, Southampton, University College London and supported by six other centres (Belfast, Cardiff, Leeds, Leicester, Manchester and Royal Brompton).

For the first time ever, it will provide a single ‘go to’ centre that will connect children and adults with rare respiratory disease with clinical experts, researchers, investors and industry leaders across the UK. The £9.4M centre will create a UK-wide biobank of patient samples and models of disease that will allow researchers to advance pioneering therapies and engage with industry and regulatory partners to develop innovative human clinical studies.

Professor Marciniak said: “There are many rare lung diseases, and together those affected constitute a larger underserved group of patients. The National Translational Centre for Rare Respiratory Diseases brings together expertise from across the UK to find effective treatments and train the next generation of rare disease researchers.”

Former BBC News journalist and presenter, Philippa Thomas, has the rare incurable lung disease, Lymphangioleiomyomatosis (LAM). Her condition has stabilised but for many people, the disease can be severely life-limiting. Philippa said: “There is so little research funding for rare respiratory diseases, that getting treatment - let alone an accurate diagnosis - really does feel like a lottery. It is also terrifying being diagnosed with something your GP will never have heard of.”

Globally, there are more than 300 million people living with rare diseases. However, rare disease research can be fragmented. Researchers can lack access to specialist facilities, as well as advice on regulation, trial designs, preclinical regulatory requirements, and translational project management, which are vital in getting new innovations to patients.

Dr Catriona Crombie, Head of Rare Disease at LifeArc, says: “We’re extremely proud to be launching four new LifeArc Translational Centres for Rare Diseases. Each centre has been awarded funding because it holds real promise for delivering change for people living with rare diseases. These centres also have the potential to create a blueprint for accelerating improvements across other disease areas, including common diseases.”

Adapted from a press release from LifeArc

Cambridge researchers will play key roles in two new centres dedicated to developing improved tests, treatments and potentially cures for thousands of people living with rare medical conditions.

The new LifeArc centre unites scientific and clinical strengths from across the UKPatrick ChinneryAlexander_Safonov (Getty)Woman inhaling from a mask nebulizer


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Training AI models to answer ‘what if?’ questions could improve medical treatments

Fri, 19/04/2024 - 09:02

Artificial intelligence techniques can be helpful for multiple medical applications, such as radiology or oncology, where the ability to recognise patterns in large volumes of data is vital. For these types of applications, the AI compares information against learned examples, draws conclusions, and makes extrapolations.

Now, an international team led by researchers from Ludwig-Maximilians-Universität München (LMU) and including researchers from the University of Cambridge, is exploring the potential of a comparatively new branch of AI for diagnostics and therapy.

The researchers found that causal machine learning (ML) can estimate treatment outcomes – and do so better than the machine learning methods generally used to date. Causal machine learning makes it easier for clinicians to personalise treatment strategies, which individually improves the health of patients.

The results, reported in the journal Nature Medicine, suggest how causal machine learning could improve the effectiveness and safety of a variety of medical treatments.

Classical machine learning recognises patterns and discovers correlations. However, the principle of cause and effect remains closed to machines as a rule; they cannot address the question of why. When making therapy decisions for a patient, the ‘why’ is vital to achieve the best outcomes.

“Developing machine learning tools to address why and what if questions is empowering for clinicians, because it can strengthen their decision-making processes,” said senior author Professor Michaela van der Schaar, Director of the Cambridge Centre for AI in Medicine. “But this sort of machine learning is far more complex than assessing personalised risk.”

For example, when attempting to determine therapy decisions for someone at risk of developing diabetes, classical ML would aim to predict how probable it is for a given patient with a range of risk factors to develop the disease. With causal ML, it would be possible to answer how the risk changes if the patient receives an anti-diabetes drug; that is, gauge the effect of a cause. It would also be possible to estimate whether metformin, the commonly-prescribed medication, would be the best treatment, or whether another treatment plan would be better.

To be able to estimate the effect of a hypothetical treatment, the AI models must learn to answer ‘what if?’ questions. “We give the machine rules for recognising the causal structure and correctly formalising the problem,” said Professor Stefan Feuerriegel from LMU, who led the research. “Then the machine has to learn to recognise the effects of interventions and understand, so to speak, how real-life consequences are mirrored in the data that has been fed into the computers.”

Even in situations for which reliable treatment standards do not yet exist or where randomised studies are not possible for ethical reasons because they always contain a placebo group, machines could still gauge potential treatment outcomes from the available patient data and form hypotheses for possible treatment plans, so the researchers hope.

With such real-world data, it should generally be possible to describe the patient cohorts with ever greater precision in the estimates, bringing individualised therapy decisions that much closer. Naturally, there would still be the challenge of ensuring the reliability and robustness of the methods.

“The software we need for causal ML methods in medicine doesn’t exist out of the box,” says Feuerriegel. “Rather, complex modelling of the respective problem is required, involving close collaboration between AI experts and doctors.”

In other fields, such as marketing, explains Feuerriegel, the work with causal ML has already been in the testing phase for some years now. “Our goal is to bring the methods a step closer to practice,” he said. The paper describes the direction in which things could move over the coming years.”

“I have worked in this area for almost 10 years, working relentlessly in our lab with generations of students to crack this problem,” said van der Schaar, who is affiliated with the Departments of Applied Mathematics and Theoretical Physics, Engineering and Medicine. “It’s an extremely challenging area of machine learning, and seeing it come closer to clinical use, where it will empower clinicians and patients alike, is very satisfying.”

Van der Schaar is continuing to work closely with clinicians to validate these tools in diverse clinical settings, including transplantation, cancer and cardiovascular disease.

Reference:
Stefan Feuerriegel et al. ‘Causal machine learning for predicting treatments.’ Nature Medicine (2024). DOI: 10.1038/s41591-024-02902-1

Adapted from an LMU media release.

Machines can learn not only to make predictions, but to handle causal relationships. An international research team shows how this could make medical treatments safer, more efficient, and more personalised.

Yuichiro Chino via Getty ImagesComputer-generated image of human brain


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

Award winning author and former MPhil in African Studies student Mary Ononokpono talks about how her work has been inspired by our MPhil programme

 

CAS Mailing list